COHOMOLOGY AND GENERALIZED GOTTLIEB GROUPS

Kee Young Lee*

Abstract. In this paper, we observe the relation between the concept of generalized Gottlieb groups and the Hurewicz homomorphism.

1. Introduction and preliminary

Let X be a pointed CW-complex. Consider a continuous map ϕ : $X \times S^{n} \rightarrow X$ such that $\phi(x, *)=x$, where $*$ is a base point of S^{n}. Then $g: S^{n} \rightarrow X$ defined by $g(s)=\phi(*, s)$ represents an element $[g] \in \pi_{n}(X)$. In this case, ϕ is called an affiliated map of g and g is a cyclic map. The set of all element $[g] \in \pi_{n}(X)$ obtained in the above manner from ϕ is denoted by $G_{n}(X)$ and called a Gottlieb group or an evaluation subgroup of the homotopy group [1]. That is, the n-th Gottlieb group $G_{n}(X)$ consists of those $\alpha \in \pi_{n}(X)$ for which there is a map $\phi: X \times S^{n} \rightarrow X$ such that the following diagram commutes:

$$
\begin{array}{cc}
X \times S^{n} \xrightarrow{\phi} & X \\
& \uparrow J \\
& \uparrow \nabla \\
X \vee S^{n} \xrightarrow{1_{X} \vee f} X & \\
& \vee
\end{array}
$$

where $f: S^{n} \rightarrow X$ is a representative of α and ∇ is a folding map.
The Gottlieb groups of a space have been generalized to certain subgroups of the homotopy groups by Woo and Kim[14].

Received by the editors on November 17, 2004.
2000 Mathematics Subject Classifications : Primary 55E05; Secondary 55E40, 55B20.

Key words and phrases: Gottlieb group, evaluation subgroup, cyclic map.

Let $(X, *)$ and $(A, *)$ be any two pointed topological spaces and $f:(A, *) \rightarrow(X, *)$ be a fixed map. Consider the continuous map $\phi: A \times S^{n} \rightarrow X$ such that $\phi(a, *)=f(a)$. Then $g: S^{n} \rightarrow X$ defined by $g(s)=\phi(*, s)$ represents an element $[g] \in \pi_{n}(X)$. The set of all element $[g] \in \pi_{n}(X)$ obtained in the above manner from ϕ is denoted by $G_{n}^{f}(X, A)$ and called generalized Gottlieb groups. Especially, if $f=$ $i: A \rightarrow X$ is an inclusion, then $G_{n}^{f}(X, A)$ is denoted by $G_{n}(X, A)$.

In [7], the author and Woo have defined and studied relative evaluation subgroups $G_{n}^{R e l}(X, A)$ of relative homotopy groups $\pi_{n}(X, A)$. Moreover, we showed that for a CW-pair $(X, A), G_{n}(X), G_{n}(X, A)$ and $G_{n}^{R e l}(X, A)$ make a sequence

$$
\begin{aligned}
\cdots \rightarrow & G_{n}(A) \xrightarrow{i_{*}} G_{n}(X, A) \xrightarrow{j_{*}} G_{n}^{\mathrm{Rel} l}(X, A) \xrightarrow{\partial} \cdots \\
& \rightarrow G_{1}^{\mathrm{Rel} l}(X, A) \rightarrow G_{0}(A) \rightarrow G_{0}(X, A)
\end{aligned}
$$

where i_{*}, j_{*} and ∂ are restrictions of the usual homomorphisms of the homotopy sequence

$$
\cdots \rightarrow \pi_{n}(A) \xrightarrow{i_{*}} \pi_{n}(X) \xrightarrow{j_{*}} \pi_{n}(X, A) \xrightarrow{\partial} \cdots \rightarrow \pi_{0}(A) \rightarrow \pi_{0}(X) .
$$

This sequence is called the G-sequence of (X, A). It was shown that if the inclusion $i: A \rightarrow X$ has a left homotopy inverse[7] or is homotopic to a constant map [7], then the G-sequence of the CW-pair (X, A) is exact.

Let $h: \pi_{n}(X) \rightarrow H_{n}(X ; Z)$ be the Hurewicz homomorphism. We shall defined $h_{p}: \pi_{n}(X) \rightarrow H_{n}(X ; Z) \rightarrow H_{n}\left(X ; Z_{p}\right)$ as composition of h tensored with $Z_{p} . h_{p}$ will be called the $\bmod p$ Hurewicz homomorphism. We shall let h_{∞} stands for the Hurewicz homomorphism $h_{\infty}: \pi_{n}(X) \rightarrow$ $H_{n}(X ; Q)$, where Q is the rational field.

In [6], the author and Woo have studied algebraic structure induced by $\phi: A \times S^{n} \rightarrow X$ affiliated to some $\alpha \in G_{n}^{f}(X, A)$ on the homology and proved following theorems.

Theorem 1.1. Let X and A be topological spaces and A has a finitely generated integer homology and $f: A \rightarrow X$ be a map which has a left homotopy inverse r. If n is an odd integer, then $G_{n}^{f}(X, A)$ is contained in the kernel of $r_{*} h_{p}$, for any prime number p or ∞ provided $\chi(A) \neq 0$.

Theorem 1.2. Let X be a topological space and A be topological space with finitely generated integer homology and $f: A \rightarrow X$ be a map with left homotopy inverse r. Suppose p is a prime number which does not divide $\chi(A)$. Then $G_{n}^{f}(X, A) \subset$ ker $r_{*} h_{p}$ for even n.

Theorem 1.3. Let A be a retract of $C W$-complex X. Then $G_{n}^{i}(X, A)$ \subset ker $r_{*} h_{p}$ and $G_{n}^{\text {Rel }}(X, A) \subset$ Ker k_{p} if and only if $G_{n}^{i}(X, A) \subset$ ker h_{p} where $i: A \rightarrow X$ be an inclusion and r is a retraction and h_{p} and k_{p} are Hurewicz homomorphisms tensored with Z_{p} for all prime number p.

In this paper, we study algebraic structure induced by $\phi: A \times S^{n} \rightarrow$ X affiliated to some $\alpha \in G_{n}^{f}(X, A)$ on the cohomology and prove the following theorem.

Theorem 1.4. Let X and A be $C W$-complexes and $f: A \rightarrow X$ be a map which has a left homotopy inverse r. If A has only a finite number of nonzero homology group, then $G_{2 n}^{f}(X, A) \subset$ ker $r_{*} h_{\infty}$.

As a corollary, we have the following result due to Gottlieb [1].
Corollary 1.5. Let X be $C W$-complex which has only a finite number of nonzero homology group, then $G_{2 n}(X) \subset$ ker h_{∞}.

Moreover, we have the following corollary. Here we denote the relative version of h_{∞} by k_{∞}.

Corollary 1.6. Let A be a retract of X and have a finite number of nonzero homology groups. Then $G_{n}^{\text {Rel }}(X, A) \subset$ Ker k_{∞} if and only if $G_{2 n}(X, A) \subset$ Ker h_{∞}.

Throughout this paper, all spaces are connected and based CWcomplexes, all maps and all homotopies are based.

2. Some consequences of an affiliated map on cohomology groups

In this section, we study the cohomology effect on $G_{n}^{f}(X, A)$ and $G_{n}^{\text {Rel }}(X, A)$. Let $\phi: A \times S^{n} \rightarrow X$ be a map such that $\left.\phi\right|_{A}=f$.

In [6], we studied the homology effect on $G_{n}^{f}(X, A)$ and $G_{n}^{\text {Rel }}(X, A)$. By the Künneth formula and the fact that $H_{*}\left(S^{n} ; Z\right)$ has no torsion, we have

$$
\mu: H_{*}(A ; G) \otimes H_{*}\left(S^{n} ; Z\right) \cong H_{*}\left(A \times S^{n} ; G\right)
$$

Thus if $x \in H_{*}\left(A \times S^{n} ; G\right), x=\mu(y \otimes 1+z \otimes \lambda)$, where $\lambda \in H_{n}\left(S^{n} ; Z\right)$ is a fundamental class and $y, z \in H_{*}(A ; G)$. We shall denote $\mu\left(z \otimes z^{\prime}\right)$ by $z \times z^{\prime}$. Furthermore, we showed that for the affiliated map $\phi: A \times S^{n} \rightarrow$ X with respect to f with trace $g, \phi_{*}(1 \times \lambda)=g_{*}(\lambda)$ and if f has a left homotopy inverse r, then $r \phi$ induces a homomorphism

$$
K_{\lambda}: H_{q}(A ; G) \rightarrow H_{q+n}(A ; G)
$$

given by $K_{\lambda}(x)=r_{*} \phi_{*}(x \times \lambda)$.
Similarly, we obtain their dualities on cohomology groups.
By the Künneth formula and the fact that $H^{*}\left(S^{n} ; Z\right)$ has no torsion, we have

$$
\Theta: H^{*}(A ; G) \otimes H^{*}\left(S^{n} ; Z\right) \cong H^{*}\left(A \times S^{n} ; G\right)
$$

Thus if $x \in H^{0}\left(A \times S^{n} ; G\right), x=\Theta\left(y \otimes 1+z \otimes \bar{\lambda}\right.$ where $\bar{\lambda} \in H^{n}\left(S^{n} ; Z\right)$ is a fundamental class of S^{n} dual to λ. We shall denote $\Theta\left(z \otimes z^{\prime}\right)$ by $z \times z^{\prime}$.

Proposition 2.1. Let $i_{1}: A \rightarrow A \times S^{n}$ be the map given by $i_{1}(x)=$ $(x, *)$ and let $i_{2}: S^{n} \rightarrow A \times S^{n}$ given by $i_{2}(s)=(*, s)$ and p_{1}, p_{2} be the natural projections from $A \times S^{n}$ to A and S^{n},respectively. Then $p_{1}^{*}(x)=x \times 1, p_{2}^{*}(\bar{\lambda})=1 \times \bar{\lambda}$ and $i_{1}^{*}(z \times 1)=z, i_{1}^{*}\left(z \times z^{\prime}\right)=0$ unless $z^{\prime} \in H^{0}\left(S^{n} ; Z\right)$ and $i_{2}^{*}\left(1 \times z^{\prime}\right)=z^{\prime}, i_{2}^{*}\left(z \times z^{\prime}\right)=0$ unless $z \in H^{0}(A ; G)$.

Proof. See p. 249 [13].
Proposition 2.2. Let $\phi: A \times S^{n} \rightarrow X$ be a map such that $\phi i_{1}=f$ and r is a left homotopy inverse of f. Then $r \phi$ induces a homomorphism $K_{\bar{\lambda}}: H^{p}(A ; G) \rightarrow H^{p-n}(A ; G)$, where G is a field.

Proof. Since $\phi^{*} r^{*}(x) \in H^{q}\left(A \times S^{n} ; G\right), \phi^{*} r^{*}(x)=z \times 1+y \times \bar{\lambda}$. Moreover, we have

$$
x=i_{1}^{*} \phi^{*} r^{*}(x)=i_{1}^{*}(z \times 1)+i_{1}^{*}(y \times \bar{\lambda})
$$

because $i_{1}^{*} \phi^{*} r^{*}=\left(r \phi i_{1}\right)^{*}=(r f)^{*}=1$. By Proposition 2.1, $x=z$ and thus $\phi^{*} r^{*}(x)=x \times 1+y \times \bar{\lambda}$ for some $y \in H^{*}(A ; G)$ is a free module over G. y is determined uniquely. Define $K_{\bar{\lambda}}(x)=y$. Then $K_{\bar{\lambda}}: H^{p}(A ; G) \rightarrow H^{p-n}(A ; G)$ is a homomorphism. In fact, if $K_{\bar{\lambda}}(x)=$ y and $K_{\bar{\lambda}}\left(x^{\prime}\right)=y^{\prime}$, then

$$
\phi^{*} r^{*}\left(x+x^{\prime}\right)=\phi^{*} r^{*}(x)+\phi^{*} r^{*}\left(x^{\prime}\right)=x \times 1+y \times \bar{\lambda}+x^{\prime} \times 1+y^{\prime} \times \bar{\lambda}
$$

So we have $K_{\bar{\lambda}}\left(x+x^{\prime}\right)=y+y^{\prime}=K_{\bar{\lambda}}(x)+K_{\bar{\lambda}}\left(x^{\prime}\right)$.
Here we define $K_{\bar{\lambda}}^{n}(x)=K_{\bar{\lambda}}\left(K_{\bar{\lambda}}^{n-1}(x)\right)$.
Proposition 2.3. $K_{\bar{\lambda}}: H^{p}(A ; G) \rightarrow H^{p-n}(A ; G)$ is dual to k_{λ} : $H_{q}(A ; G) \rightarrow H_{q+n}(A ; G)$.

Proof. Let us denote the Kronecker product of x and y by $\langle x, y\rangle$. Then we have

$$
\begin{aligned}
\left\langle u, K_{\lambda}(v)\right. & \rangle=\left\langle u, r_{*} \phi_{*}(v \times \lambda)\right\rangle \\
= & \left\langle\phi^{*} r^{*}(u), v \times \lambda\right\rangle \\
= & \left\langle u \times 1+K_{\bar{\lambda}}(u) \times \bar{\lambda}, v \times u\right\rangle \\
= & \langle u \times 1, v \times \lambda\rangle+\left\langle K_{\bar{\lambda}}(u) \times \bar{\lambda}, v \times \lambda\right\rangle \\
= & \langle u, v\rangle\langle 1, \lambda\rangle+\left\langle K_{\bar{\lambda}}(u), v\right\rangle\langle\bar{\lambda}, \lambda\rangle \\
= & \left\langle K_{\bar{\lambda}}(u), v\right\rangle,
\end{aligned}
$$

for $\langle u, v\rangle=0$ and $\langle\bar{\lambda}, \lambda\rangle=1$.
The cup product in $A \times S^{n}$ is given by

$$
(x \times y) \cup\left(x^{\prime} \times y^{\prime}\right)=(-1)^{q r}\left(\left(x \cup x^{\prime}\right) \times\left(y \cup y^{\prime}\right)\right)
$$

where $x^{\prime} \in H^{q}(A ; G)$ and $y \in H^{r}\left(S^{n} ; Z\right)$. Thus

$$
\begin{aligned}
\phi^{*} r^{*}(u \cup v) & =\phi^{*} r^{*}(u) \cup \phi^{*} r^{*}(v) \\
& =\left(u \times 1+K_{\bar{\lambda}}(u) \times \bar{\lambda}\right) \cup\left(v \times 1+K_{\bar{\lambda}}(v) \times \bar{\lambda}\right) \\
& =(u \cup v) \times 1+\left[\left(u \cup K_{\bar{\lambda}}(v)\right)+(-1)^{n \operatorname{dim} v}\left(K_{\bar{\lambda}}(u) \cup v\right)\right] \times \bar{\lambda}
\end{aligned}
$$

The map $g: S^{n} \rightarrow X$ given by $g=\phi i_{2}$ plays an important role. Let $x \in H^{n}(A ; Z)$. Then

$$
\begin{aligned}
g^{*} r^{*}(x) & =i_{2}^{*} \phi^{*} r^{*}(x) \\
& =i_{2}^{*}\left(x \times 1+K_{\bar{\lambda}}(x) \times \bar{\lambda}\right) \\
= & i_{2}^{*}\left(K_{\bar{\lambda}}(x) \times \bar{\lambda}\right) \\
& =m \cdot \bar{\lambda} \in H^{n}\left(S^{n} ; Z\right)
\end{aligned}
$$

for some integer m. Since $K_{\bar{\lambda}}(x) \in H^{0}(A ; Z), K_{\bar{\lambda}}(x)=s \cdot 1$ for some integer s, where 1 is the generator of $H^{0}(A ; Z)$. But

$$
m \cdot \bar{\lambda}=i_{2}^{*}\left(K_{\bar{\lambda}}(x) \times \bar{\lambda}\right)=i_{2}^{*}(s \cdot 1 \times \bar{\lambda})=i_{2}^{*}(1 \times s \cdot \bar{\lambda})=s \cdot \bar{\lambda}
$$

so we have $K_{\bar{\lambda}}(x)=m \cdot 1$.

3. Proof of the main theorem

In this section we prove Theorem 1.4 and corollaries.
Proof of Theorem 1.4. Suppose $\alpha \in G_{2 n}^{f}(X, A)$ is not contained in the kernel of $r_{*} h_{\infty}$. Let $\phi: A \times S^{n} \rightarrow X$ be an affiliated map of α with respect to f. Then by Lemma 4 [8], we have $k_{\lambda}(1)=r_{*} h_{\infty}(\alpha) \in$ $H_{2 n}(A ; Q)$ and $1=u(1 \times 1)$, where Q is the field of rational numbers and $u: H_{0}(A) \otimes Q \rightarrow H_{0}(A ; Q)$ is a natural isomorphism. Let $\bar{\beta} \in$ $H^{2 n}(A ; Q)$ be dual to $K_{\lambda}(1)$. Then since $\left\langle K_{\bar{\lambda}}(\bar{\beta}), 1\right\rangle=\left\langle\bar{\beta}, K_{\lambda}(1)\right\rangle=1$. So we have $K_{\bar{\lambda}}(\bar{\beta})=1 \in H_{0}(A ; Q)$.

Now we shall prove that $\bar{\beta}^{s} \neq 0$ for all integers s, where $\bar{\beta}^{s}=$ $\bar{\beta} \cup \stackrel{s}{\cup} \cup \bar{\beta}(n$-times cup product of $\bar{\beta})$. Note $\bar{\beta}^{0}=1$. First we show that

$$
\phi^{*} r^{*}\left(\bar{\beta}^{s}\right)=\bar{\beta}^{s} \times 1+s \bar{\beta}^{s-1} \times \bar{\lambda}
$$

When $s=1$, it is true. In fact,

$$
\begin{aligned}
\phi^{*} r^{*}(\bar{\beta}) & =\bar{\beta} \times 1+K_{\bar{\lambda}}(\bar{\beta}) \times \bar{\lambda} \\
& =\bar{\beta} \times 1+1 \times \bar{\lambda} \\
& =\bar{\beta} \times 1+1 \cdot \bar{\beta}^{0} \times \bar{\lambda}
\end{aligned}
$$

Now suppose it is true for $s-1$. Then

$$
\begin{aligned}
\phi^{*} r^{*}\left(\bar{\beta}^{s}\right)= & \phi^{*} r^{*}\left(\bar{\beta}^{s-1} \cup \bar{\beta}\right) \\
= & \phi^{*} r^{*}\left(\bar{\beta}^{s-1}\right) \cup \phi^{*} r^{*}(\bar{\beta}) \\
= & \left(\bar{\beta}^{s-1} \times 1+(s-1) \bar{\beta}^{s-2} \times \bar{\lambda}\right) \cup(\bar{\beta} \times 1+1 \times \bar{\lambda}) \\
= & \left(\bar{\beta}^{s-1} \cup \bar{\beta}\right) \times 1+\left(\overline{)^{2 n}}(s-1)\left(\bar{\beta}^{s-2} \cup \bar{\beta}\right) \times(\bar{\lambda} \cup 1)\right. \\
& +\left(\bar{\beta}^{s-1} \cup 1\right) \times(1 \cup \bar{\lambda}) \\
= & \bar{\beta}^{s} \times 1+\left((-1)^{2 n^{2}}(s-1) \bar{\beta}^{s-1}+\bar{\beta}^{s-1}\right) \times \bar{\lambda} \\
= & \bar{\beta}^{s} \times 1+s \bar{\beta}^{s-1} \times \bar{\lambda} .
\end{aligned}
$$

If $\bar{\beta}^{s}=0$, then

$$
0=\phi^{*} r^{*}\left(\bar{\beta}^{s}\right)=\bar{\beta}^{s} \times 1+s \bar{\beta}^{s-1} \times \bar{\lambda}
$$

So we have $\bar{\beta}^{s-1}=0$. By continuous calculation, we have $\bar{\beta}=0$. It is a contradiction to the fact that $\left\langle\bar{\beta}, K_{\lambda}(1)\right\rangle=1$. Consequently, $\bar{\beta}^{s} \neq 0$ for all s. But $\bar{\beta}^{s} \neq 0$ leads to a contradiction. Since $0 \neq \bar{\beta}^{s} \in H^{2 s n}(A ; Q)$, $H^{2 s n}(A ; Q) \neq 0$ for all $s \in Z$. This implies $\operatorname{Hom}\left(H_{2 s n}(A ; Q), Q\right) \neq 0$. So $H_{2 s n}(A ; Q) \neq 0$. This is a contradiction to the hypothesis. Consequently, α is contained in the kernel of $r_{*} h_{\infty}$.

In the case $f=1_{X}$, we have $G_{n}^{f}(X, A)=G_{n}(X)$. So we the following corollary.

Corollary 3.1. Let X be $C W$-complex which has only a finite number of nonzero homology group, then $G_{2 n}(X) \subset$ ker h_{∞}.

Let A be a retract of X with retraction r, h_{∞} Hurewicz homomorphism with tensor Q and k_{∞} is the relative version of it, that is, $k_{\infty}: G_{n}^{R e l}(X, A) \rightarrow H_{n}(X, A ; Q)$. Then we have the following commutative ladder;

$$
\begin{array}{cc}
\rightarrow G_{n}(A) & \stackrel{i_{\#}}{\longrightarrow} G_{n}(X, A) \xrightarrow{j_{\#}} G_{n}^{\mathrm{Re} l}(X, A) \rightarrow \\
\downarrow h_{\infty} & \downarrow h_{\infty} \\
\rightarrow k_{\infty} \\
H_{n}(X, A) \xrightarrow{i_{*}} H_{n}(X ; Q) \xrightarrow{j_{*}} H_{n}(X, A ; Q) \rightarrow
\end{array}
$$

Since $j_{\#}$ is surjective, $G_{n}(X, A) \subset \operatorname{Ker} h_{\infty} \operatorname{implies} G_{n}^{\text {Rel }}(X, A) \subset$ Ker k_{∞} and $G_{n}(X, A) \subset \operatorname{Ker} r_{*} h_{\infty}$. Conversely, suppose $G_{n}^{\text {Rel }}(X, A) \subset$ Ker k_{∞} and $G_{n}(X, A) \subset \operatorname{Ker} r_{*} h_{\infty}$. Then

$$
j_{*} h_{\infty}\left(G_{n}(X, A)=k_{\infty} j_{\#}\left(G_{n}(X, A)\right)=k_{\infty}\left(G_{n}^{R e l}(X, A)\right)=0 .\right.
$$

Thus $h_{\infty}\left(G_{n}(X, A)\right) \subset \operatorname{Ker} j_{*}=\operatorname{Im} i_{*}$. So, for every $\alpha \in G_{n}(X, A)$, there is a $\beta \in H_{n}(X ; Q)$ such that $i_{*}(\beta)=h_{\infty}(\alpha)$. But $\beta=r_{*} i_{*}(\beta)=$ $r_{*} h_{\infty}(\alpha)=0$. Hence $h_{\infty}(\alpha)=i_{*}(\beta)=0$. Consequently $G_{n}(X, A) \subset$ Ker h_{∞}. Thus we have the following corollary.

Corollary 3.2. Let A be a retract of X and have a finite number of nonzero homology groups. Then $G_{2 n}(X, A) \subset$ Ker $r_{*} h_{\infty}$ and $G_{2 n}^{\text {Rel }}(X, A) \subset$ Ker k_{∞} if and only if $G_{2 n}(X, A) \subset$ Ker h_{∞}.

References

1. D. H. Gottlieb, Evaluation subgroups of homotopy groups, Amer. J. Math. 91 (1969), 729-755.
2. D. H. Gottlieb, Witness, transgressions, and the evaluation map, Indiana Univ. Math. J. 24 (1975), 825-836.
3. Sze-Tsen Hu, Homotopy Theory, Academic Press, New York, 1989.
4. G. E. Lang, Evaluation subgroups of factor spaces, Pacific. J. Math. 42 (1972), 701-709.
5. G. Lupton and S. Smith, Rationalized evaluation subgroups of a map and the rationalized G-sequence, preprint.
6. K. Y. Lee and M. H. Woo, Homology and generalized evaluation subgroups of homotopy groups, J. Korean Math. Soc. 25 (1988), 333-342.
7. K. Y. Lee and M. H. Woo, The G-sequence and the ω-homology of a $C W$-pair, Topology Appl. 52 (1993), 221-236.
8. K. Y. Lee and M. H. Woo, Cyclic morphisms in the category of pairs and generalized G-sequences, J. Math. Kyoto Univ. 38 (1998), 271-285.
9. K. Y. Lee and M. H. Woo, Cocyclic morphisms and dual G-sequences, Topology Appl. 116 (2001), 123-136.
10. J. Oprea, Gottlieb groups, group actions, fixed points and rational homotopy, Lecture Notes Series, Seoul National Univ. Research Inc. Math. Global Analysis Research Center, Seoul 29, 1995.
11. J. Siegel, G-spaces, W-spaces and H-spaces, Pacific J. Math. 31 (1970), 209-214.
12. S. B. Smith, Rational evaluation subgroups, Math. Zeit. 221 (1996), 387-400.
13. E. Spanier, Algebraic Topology, McGraw-Hill Book Company, New York, 1981.
14. M. H. Woo and J. R. Kim, Certain subgroups homotopy groups, J. Korean Math. Soc. 21 (1984), 109-120.

*

Department of Information and Mathematics
Korea University
Chochiwon 339-701, Korea
E-mail: keyolee@korea.ac.kr

