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GENERALIZED QUASI–BANACH SPACES

Choonkil Baak*

Abstract. In this paper, the notion of a generalized quasi-normed

space is introduced and its completion is investigated.

1. Introduction and preliminaries

It is well-known that the rational line Q is not complete but can be

enlarged to the real line R which is complete. And this completion R of

Q is such that Q is dense in R. It is quite important that an arbitrary

incomplete normed space can be completed in a similar fashion.

Banach spaces play an important role in many branches of mathe-

matics and its applications ([2], [3], [4], [6], [7]).

We recall some basic facts concerning quasi-Banach spaces and

some preliminary results.

Definition 1. ([1, 5]) Let X be a linear space. A quasi-norm is a

real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant K > 0 such that ‖x+ y‖ ≤ K(‖x‖+ ‖y‖)

for all x, y ∈ X.

The pair (X, ‖·‖) is called a quasi-normed space if ‖·‖ is a quasi-norm

on X.

A quasi-Banach space is a complete quasi-normed space.
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A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-

Banach space.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a trans-

lation invariant metric on X. By the Aoki–Rolewicz theorem [5] (see

also [1]), each quasi-norm is equivalent to some p-norm. Since it is

much easier to work with p-norms than quasi-norms, henceforth we

restrict our attention mainly to p-norms.

2. Completion of generalized quasi-normed spaces

In this section, we generalize the concept of quasi-normed spaces

and investigate the completion of the generalized quasi-normed space.

Definition 2. Let X be a linear space. A generalized quasi-norm is

a real-valued function on X satisfying the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.

(2) ‖λx‖ = |λ| · ‖x‖ for all λ ∈ R and all x ∈ X.

(3) There is a constant K > 0 such that ‖
∑

∞

j=1
xj‖ ≤

∑
∞

j=1
K‖xj‖

for all x1, x2, · · · ∈ X with
∑

∞

j=1
xj ∈ X.

The pair (X, ‖ · ‖) is called a generalized quasi-normed space if ‖ · ‖ is

a generalized quasi-norm on X.

A generalized quasi-Banach space is a complete generalized quasi-

normed space.

A generalized quasi-norm ‖ · ‖ is called a generalized p-norm (0 <

p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X. In this case, a generalized quasi-Banach space is

called a generalized p-Banach space.
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Definition 3. Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be generalized quasi-

normed spaces.

(1) A mapping L of X into Y is said to be isometric or an isom-

etry if for all x, y ∈ X

‖Lx − Ly‖Y = ‖x − y‖X .

(2) The space X is said to be isometric with the space Y if there

exists a bijective isometry of X onto Y . The spaces X and Y

are called isometric spaces.

Theorem 1. Let X = (X, ‖ · ‖X) be a generalized quasi-normed

space. Assume that the generalized quasi-norm ‖·‖ is a p-norm. Then

there exist a generalized quasi-Banach space X̂ and an isometry L

from X onto a subspace Y of X̂ which is dense in X̂. The space X̂ is

unique up to isometries.

Proof. We divide the proof into four steps.

Step I. We construct a generalized quasi-Banach space (X̂, ‖ ·‖
X̂

).

Let {xn} and {x′

n} be Cauchy sequences in X. Define {xn} to be

equivalent to {x′

n}, written {xn} ∼ {x′

n}, if

(2.1) limn→∞‖xn − x′

n‖X = 0.

Let X̂ be the set of all equivalence classes of Cauchy sequences. We

write {xn} ∈ x̂ to mean {xn} is a member of x̂ and a representative

of the class x̂. We now set

(2.2) ‖x̂ − ŷ‖
X̂

= limn→∞‖xn − yn‖X ,

where {xn} ∈ x̂ and {yn} ∈ ŷ. We show that this limit exists. We

have

‖xn − yn‖
p

X ≤ ‖xn − xm‖p

X + ‖xm − ym‖p

X + ‖ym − yn‖
p

X .
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So

‖xn − yn‖
p

X − ‖xm − ym‖p

X ≤ ‖xn − xm‖p

X + ‖ym − yn‖
p

X ,

and a similar inequality with m and n interchanged, i.e.,

‖xm − ym‖p
X − ‖xn − yn‖

p
X ≤ ‖xn − xm‖p

X + ‖ym − yn‖
p
X .

Hence

(2.3)
∣∣‖xn − yn‖

p

X − ‖xm − ym‖p

X

∣∣ ≤ ‖xn − xm‖p

X + ‖ym − yn‖
p

X .

Since {xn} and {yn} are Cauchy, we can make the right side as small

as we please. This implies that the limit in (2.2) exists since R is

complete.

We must show that the limit in (2.2) is independent of the partic-

ular choice of representatives. If {xn} ∼ {x′

n} and {yn} ∼ {y′

n}, then

by (2.1)

∣∣‖xn − yn‖
p

X − ‖x′

n − y′

n‖
p

X

∣∣ ≤ ‖xn − x′

n‖
p

X + ‖yn − y′

n‖
p

X ,

which tends to zero as n → ∞. This implies the assertion

lim
n→∞

‖xn − yn‖X = lim
n→∞

‖x′

n − y′

n‖X .

Now we prove that ‖ · ‖
X̂

in (2.2) is a generalized quasi-norm on

X̂.

Obviously, ‖ · ‖
X̂

satisfies Definition 2 (1) and (2). Furthermore,

since ‖ · ‖X is a generalized quasi-norm on X, there is a constant

K > 0 such that

‖
∞∑

j=1

xj‖X ≤
∞∑

j=1

K‖xj‖X
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for all x1, x2, · · · ∈ X. Thus

‖
∞∑

j=1

x̂j‖X̂
≤

∞∑

j=1

K‖x̂j‖X̂

for all x̂1, x̂2, · · · ∈ X̂. So ‖ · ‖
X̂

is a generalized quasi-norm on X̂.

Note that the inequality (2.2) implies that the generalized quasi-

norm ‖ · ‖
X̂

is a generalized p-norm.

We must make X̂ into a vector space. To define on X̂ the two

algebraic operations of a vector space, we consider any x̂, ŷ ∈ X̂ and

and representatives {xn} ∈ x̂ and {yn} ∈ ŷ. We set zn = xn + yn.

Then {zn} is Cauchy in X since

‖zn−zm‖X = ‖xn +yn−(xm+ym)‖X ≤ K‖xn−xm‖X +K‖yn−ym‖.

We define the sum ẑ = x̂ + ŷ of x̂ and ŷ to be the equivalence class

for which {zn} is a representative, i.e., {zn} ∈ ẑ. This definition is

independent of the particular choice of Cauchy sequences belonging

to x̂ and ŷ. In fact, the equality (2.1) shows that if {xn} ∼ {x′

n} and

{yn} ∼ {y′

n}, then {xn + yn} ∼ {x′

n + y′

n} because

‖xn + yn − (x′

n + y′

n)‖X ≤ K‖xn − x′

n‖X + K‖yn − y′

n‖X .

Similarly, we define the product αx̂ ∈ X̂ of a scalar α and x̂ to be

the equivalence class for which {αxn} is a representative. Again, this

definition is independent of the particular choice of a representative

of x̂. The zero element of X̂ is the equivalence class containing all

Cauchy sequences which converge to zero. It is not difficult to see

that those two algebraic operations have all the properties required

by the definition, so that X̂ is a vector space.

Step II. We construct an isometry L : X → Y ⊂ X̂.
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With each b ∈ X we associate the class b̂ ∈ X̂ which contains the

constant Cauchy sequence (b, b · · · ). This defines a mapping L : X →

Y onto the subspace Y = L(X) ⊂ X̂. The mapping L is given by

b 7→ b̂ = Lb, where (b, b, · · · ) ∈ b̂. We see that L is an isometry since

(2.2) becomes simply

‖b̂ − ĉ‖
X̂

= ‖b − c‖X .

Here ĉ is the class of {yn} where yn = c for all n ∈ N. Any isometry

is injective, and L : X → Y is surjective since L(X) = Y . Hence Y

and X are isometric.

From the definition it follows that on Y the operations of vector

induced from X̂ agree with those induced from X by means of L.

We show that Y is dense in X̂ . We consider any x̂ ∈ X̂. Let

{xn} ∈ x̂. For every ǫ > 0 there is an N ∈ N such that

‖xn − xN‖X <
ǫ

2

for all n > N . Let (xN , xN , · · · ) ∈ x̂N . Then x̂N ∈ Y . By (2.2),

‖x̂ − x̂N‖
X̂

= lim
n→∞

‖xn − xN‖X ≤
ǫ

2
< ǫ.

This shows that every ǫ-neighborhood of the arbitrary x̂ ∈ X̂ contains

an element of Y . Hence Y is dense in X̂.

Step III. We prove the completeness of X̂.

Let {x̂n} be any Cauchy sequence in X̂. Since Y is dense in X̂, for

every x̂n there is a ẑn ∈ Y such that

(2.4) ‖x̂n − ẑn‖X̂
<

1

n
.

Hence by Definition 2 (3),

‖ẑm − ẑn‖X̂
≤ K‖ẑm − x̂m‖

X̂
+ K‖x̂m − x̂n‖X̂

+ K‖x̂m − ẑn‖X̂

<
K

m
+ K‖x̂m − x̂n‖X̂

+
K

n
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and this is less than any given ǫ > 0 for sufficiently large m and n

because {x̂n} is a Cauchy sequence. Hence {ẑn} is a Cauchy sequence.

Since L : X → Y is isometric and ẑn ∈ Y , the sequence {zn}, where

zn = L−1(ẑn), is a Cauchy sequence in X. Let x̂ ∈ X̂ be the class

to which {zn} belongs. We show that x̂ is the limit of {x̂n}. By

Definition 2 (3) and (2.4),

‖x̂n − x̂‖
X̂

≤ K‖x̂n − ẑn‖X̂
+ K‖ẑn − x̂‖

X̂

<
K

n
+ K‖ẑn − x̂‖

X̂
.(2.5)

Since {zn} ∈ x̂ and ẑm ∈ Y , so that (zm, zm, zm, · · · ) ∈ ẑm, the

inequality (2.5) becomes

‖x̂n − x̂‖
X̂

<
K

n
+ K lim

m→∞

‖zn − zm‖X

and the right side is smaller than any given ǫ > 0 for sufficiently large

n. Hence the arbitrary Cauchy sequence {x̂n} in X̂ has the limit

x̂ ∈ X̂, and X̂ is complete.

Step IV. We show the uniqueness of X̂ up to isometries.

If (X̃, ‖ · ‖
X̃

) is another complete metric space with a subspace Z

dense in X̃ and isometric with X, then for any x̃, ỹ ∈ X̃ we have

sequences {x̃n}, {ỹn} in Z such that x̃n → x̃ and ỹn → ỹ. So

‖x̃ − ỹ‖
X̃

= lim
n→∞

‖x̃n − ỹn‖X̃

follows from

∣∣‖x̃ − ỹ‖p

X̃
− ‖x̃n − ỹn‖

p

X̃

∣∣ ≤ ‖xn − xm‖p

X̃
+ ‖ỹ − ỹn‖

p

X̃
→ 0.

Here the inequality is similar to (2.3). Since Z is isometric with Y ⊂ X̂

and Y = X̂, the norms on X̃ and X̂ must be the same. Hence X̃ and

X̂ are isometric. �
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Corollary 2. Let X = (X, ‖·‖X) be a quasi-normed space. Then

there exist a quasi-Banach space X̂ and an isometry L from X onto

a subspace Y of X̂ which is dense in X̂. The space X̂ is unique up to

isometries.
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