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A NOTE ON CONDUCTANCE METHOD IN Rn

Bo-Hyun Chung* and Wan-Soo Jung**

Abstract. We introduce the conductance and examine its proper-

ties. We study the local behavior of quasiconformal mappings on the
boundary of a domain D ⊂ R

n

and present some geometric applica-

tions of conductance.

1. Introduction

One of the problems in the theory of quasiconformal mappings is

to determine whether or not two given homeomorphic domains can

be mapped quasiconformally onto each other. The problem is closely

related to the behavior of the mappings near the boundaries. This

problems have mostly been studied in the special case where one of

the domains is a ball. For example,

“If f is a quasiconformal mapping of B3 onto a domain D which is

m-connected at a given point b ∈ ∂D, then at most m points of ∂B3

correspond to b under f .”

Using the method of conductance, F. W. Gehring ([4]) established

the above theorem. The method of conductance is a basic tool in

the theory of quasiconformal mappings. In this note, we introduce

the concept of conductance of a curve family and examine some basic

properties of conductance. And we study the local behavior of quasi-

conformal mappings on the boundary of a domain D ⊂ R
n
, ([4], [9],

[10]).
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Throughout this note, as a measure in Rn we use the n-dimensional

Lebesque measure mn , where the n may be omitted. we let Bn(x0, r)

denote the n-dimensional ball |x−x0| < r and Sn−1(x0, r) its (n−1)-

dimensional boundary sphere |x − x0| = r. Let d be the Euclidean

distance and ∂D the boundary of D.

2. Conductance of a curve family

Given a family, Γ, of curves γ in R
n
, we let adm(Γ) denote the

family of non-negative Borel measurable functions ρ(x) : Rn → [0,∞]

such that

(2.1)

∫
γ

ρ ds ≥ 1,

for every rectifiable curve γ ∈ Γ. We define the conductance of Γ by

(2.2) C(Γ) = inf
ρ∈adm(Γ)

∫
Rn

ρn dm.

Obviously 0 ≤ C(Γ) ≤ ∞, (ref. [3]).

Let D and D∗ be two domains in R
n
. A homeomorphism f : D →

D∗ is said to be k-quasiconformal, 1 ≤ k < ∞, if it satisfies the double

inequality
1

k
C(Γ) ≤ C(f(Γ)) ≤ kC(f(Γ))

for each curve family Γ in D. A homeomorphism f is said to be qua-

siconformal if it is k-quasiconformal for some k, ([9]).

We let Γ = ΓD(F1, F2) denote the family of all curves which join

F1 and F2 in a domain D ⊂ R
n
. We consider a geometric quantity

C(ΓD(F1, F2)), which in terms of the ‘sizes’ of F1 and F2, (ref. [10]).

The numerical value of the conductance is known only for a few

curve families. Therefore good estimates are of importance.
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Proposition 2.1 [3]. Let T be the rectangular parallelepiped

with two parallel faces E1 and E2 of area A and distance h apart,

then

(2.3) C(Γ) = C(ΓT (E1, E2)) =
A

hn−1
.

Proof. Choose ρ ∈ adm(Γ) and let γy be the vertical segment in

T which join E1 and point y in the base E2. Then γy ∈ Γ and

1 ≤ (

∫
γ

ρds)n ≤ hn−1

∫
γy

ρnds,

for all such y. Hence

∫
T

ρndm ≥

∫
E2

(

∫
γy

ρnds)dmn−1 ≥
A

hn−1
.

Since ρ is arbitrary,

(2.4) C(Γ) ≥
A

hn−1
.

On the other hand, set ρ = 1/h, then ρ ∈ adm(Γ) and

(2.5) C(Γ) ≤

∫
T

ρndm =
A

hn−1
.

Therefore by (2.4) and (2.5), we obtain (2.3). �

Proposition 2.2 [1]. Let R be the spherical ring R : r1 < x < r2

and let R1 and R2 denote the bounded component and unbounded

component of the complement of R, respectively. Then

(2.6) C(Γ) = C(ΓR(∂R1, ∂R2)) =
ωn−1

(log(r2/r1))n−1
,
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where ωn−1 = mn−1(S
n−1) denote the surface area of the unit sphere

in Rn.

Proof. Let ρ ∈ adm(Γ) and let γe = {x ∈ Rn : x = re, r1 <

r < r2} be the radial segment in R which joins ∂R1 and ∂R2 and is

parallel to the unit vector e ∈ Sn−1(0, 1). Using Hölder’s inequality

(see [5], Thorem 189, p.140) we obtain

1 ≤ (

∫
γe

ρds)n ≤

∫ r2

r1

ρnrn−1dr(

∫ r2

r1

1

r
dr)n−1

= (log
r2

r1
)n−1

∫ r2

r1

ρnrn−1dr.

Integrating over all e we obtain by Fubini’s theorem in polar coordi-

nates

ωn−1 ≤ (log
r2

r1
)n−1

∫
R

ρndm.

Taking the infimum over all ρ ∈ adm(Γ), we obtain

(2.7) C(Γ) ≥
ωn−1

(log(r2/r1))n−1
.

On the other hand, set

ρ =
1

|x|log(r2/r1)

for x ∈ R, then ρ ∈ adm(Γ) and thus

(2.8) C(Γ) ≤

∫
R

ρndm =
ωn−1

(log(r2/r1))n−1
.

�

Theorem 2.3 [2]. If every curve of Γ1 has a subcurve belonging

to Γ2 ( Γ1 is said to be minorized by Γ2 and denote Γ2 < Γ1), then

C(Γ2) ≥ C(Γ1).
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That is, C(Γ) is big when the curves are plentiful or short, small when

the curves are few or long.

Proof. Obviously adm(Γ2) ⊂ adm(Γ1). �

Proposition 2.4 [3]. C(Γ)is an outer measure on the collections

of curve families Γ. That is, for curve families Γ1,Γ2, · · · ,Γk, · · · in

R
n
,

(a) C(∅) = 0

(b) If Γ1 ⊂ Γ2, then C(Γ1) ≤ C(Γ2).

(c) C(∪kΓk) ≤
∑
k

C(Γk).

Proof. (c) Let ρk ∈ adm(Γk). We set ρ = sup
k

ρk, hence ρ ∈

adm(∪kΓk) and it follows that

C(∪kΓk) ≤

∫
ρn dm ≤

∑
k

∫
(ρk)n dm. �

Remark. ([3], [9]). (i) If Γ1 ⊂ Γ2, then Γ1 > Γ2. Thus Proposition

2.4 (b) is a special case of Theorem 2.3.

(ii) We can define the notion of measurable curve family.

(1) Γ is measurable if C(Γ) = 0,

(2) Γ is not measurable if 0 < C(Γ) < ∞,

(3) Γ may or may not be measurable if C(Γ) = ∞.

Theorem 2.5 [3]. If all the curves in Γ pass through the fixed

the point x0 (6= ∞), then

C(Γ) = 0.

Proof. Let Γk be the subfamily of Γ which intersect x0 and Sn−1

(x0,
1
k
) and Γ′ the family of all curves in Bn(x0 ,

1
k
) which join x0 and

Sn−1(x0 ,
1
k
). Then Γ′ < Γk. Hence

C(Γk) ≤
ωn−1

(log((1/k)/0))n−1
= 0.
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by Proposition 2.2 and Theorem 2.3 above. Since Γ = ∪kΓk,

C(Γ) ≤
∑

k

C(Γk) = 0

by Proposition 2.4(c) above. �

As immediate consequence of Theorem 2.5 we have the following

Corollary.

Corollary 2.6 A continuum is a compact connected set which

contains more than one point. Let A1 and A2 be two continua in a

domain D, then

C(ΓD(A1, A2)) > 0.

In particular, if A1 ∩ A2 6= ∅ or D = R
n
, then C(ΓD(A1, A2)) = ∞.

Just as measure theory provides the notion of negligible point

set(measure zero), modulus provides the notion of a negligible curve

family.

Proposition 2.7 [8]. For curve families Γ1,Γ2, · · · ,Γj , · · · in R
n
,

(a) C(Γ1) = 0 implies C(Γ1 ∪ Γj) = C(Γj).

(b) C(Γj) = 0 implies C(∪jΓj) = 0.

3. Some geometric applications of conductance

Our first example states that isolated boundary points are remov-

able singularities. We give some topological notions.

Definition 3.1[9]. Let f : D → R
n

be a mapping and b a point

of ∂D. The cluster set cl(f, b) of f at b is the set of all points b∗ ∈ R
n

for which there exist a sequence {xk} in D such that xk → b and

f(xk) → b∗.

Thus f has a limit b∗ at b if and only if cl(f, b) = {b∗}. Since

R
n

is compact, the cluster set is never empty. The cluster sets of a

homeomorphism f : D → D∗ are always subsets of ∂D∗.

Theorem 3.2 [9]. Let f : D → D∗ be a quasiconformal mapping

and b an isolated point of ∂D, then f has a limit b∗ at b.
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Proof. We choose a ball neighborhood U of b such U ∩∂D = {b}.

Then A = U − {b} is a ring and

C(ΓA) = C [ΓA(∂U, {b})] = 0.

f(A) is also a ring with boundary components f(∂U) and cl(f, b).

Since f is quasiconformal mapping,

C(Γf(A)) = C [Γf(A)(f(∂U), {f(b)})] = 0.

By Proposition 2.2, cl(f, b) consists of a single point b∗. �

We next introduce a number of concepts which describe the behav-

ior of a domain at a boundary point. All point sets considered lie in

R
n
.

Definition 3.3 [9]. Let b be a boundary point of a domain D.

(i) D is locally connected at b if b has arbitrarily small neighborhoods

U such that U ∩ D connected.

(ii) D is m-connected at b, (m = 1, 2, · · · ), if there exist arbitrarily small

neighborhoods U of b such that U ∩D consists of m components each

of which is locally connected at b.

(iii) D has property P1 at b if the following condition is satisfied : If

F1 and F2 are connected subsets of D such that b ∈ F1 ∩ F2, then

C(ΓD(F1, F2)) = ∞.

(iv) D is finitely connected at b if b has arbitrarily small neighborhoods

U such that U ∩ D has a finite number of components.

Theorem 3.4. Let D be m-connected at b(6= ∞) and f : D → D∗

a quasiconformal mapping. Then

(a) cl(f, b) contains at most m components.

(b) If D∗ has property P1 at every point of cl(f, b), then cl(f, b) con-

tains at least m points.
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Proof. (a) From the m-connectedness property and the definition

of cl(f, b), we readily obtain the above result.

(b) Since the case of m = 1 is trivial, we discuss the case of m ≥ 2.

Assume that the statement is not true, that is, suppose that cl(f, b)

contained at most (m − 1) points. Then there exist i and j, (1 ≤ i <

j ≤ m) and a point c in cl(f, b) such that c ∈ f(Fi) ∩ f(Fj ). But since

f(Fi) and f(Fj ) are connected sets in D∗. Since D∗ has property P1

at c,

(3.1) C(f(ΓD)) = C [ΓD∗(f(Fi), f(Fj ))] = ∞.

On the other hand, let U be a neighborhood of b with each of the

components, E1, · · · , Em, of U ∩ D being locally-connected at b. Set

d = d(b, ∂U). Then there is a connected set Fi ⊂ Ei ∩ Bn(b, d/2)

with b ∈ Fi, (i = 1, · · · ,m). Denote

ΓD = ΓD(Fi, Fj),

ΓR = ΓR[Sn−1(b, d/2), Sn−1(b, d)],

where R is the ring :(d/2) < |x− b| < d. Since the curve family ΓD is

minorized by the family ΓR, by Proposition 2.2 and Theorem 2.3, we

obtain

(3.2) C(ΓD) ≤ C(ΓR) =
ωn−1

(log 2)n−1
< ∞,

which contradicts the quasiconformality of f . �

An argument similar to that employed in the proof of Theorem 3.4(b)

yields the following result.

Corollary 3.5. Let D be finitely connected at b(6= ∞) ∈ ∂D

without being m-connected for any integer m and f : D → D∗ a

quasiconformal mapping. If D∗ has property P1 at every point of

cl(f, b), then cl(f, b) is infinite.
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