한국초등수학교육학회지 (Journal of Elementary Mathematics Education in Korea)
- 제9권2호
- /
- Pages.181-200
- /
- 2005
- /
- 1229-3229(pISSN)
초등학교 수학과 소집단 협동학습에 나타나는 의사소통의 수단 분석
An Analysis of Communication Means in the Elementary Mathematical Small Group Cooperative Learning
초록
구성주의 관점에 의하면 수학적 지식은 교사가 일방적으로 전수하는 것이 아니라 학생들이 자발적인 방법으로 스스로의 지식을 형성해 가는 것이다. 특히 사회적 구성주의에서는 사회구성원간의 의사소통을 통해 수학지식이 형성됨을 강조하고 있다. 일반적으로 학생들의 의사소통은 소집단 협동학습의 환경에서 가장 활발하게 이루어진다. 문제해결을 위해 학생들은 각자의 생각을 교환하고 자유롭게 질문하며 상호간의 사고와 개념을 명확하게 하고 의미 있는 방법으로 서로의 학습에 도움을 주게 된다. 본 연구에서는 6학년 학생들이 수학적 논의를 하는 과정에서 사용하는 의사소통의 수단을 언어와 행동의 관점으로 분석하여 매 수업 장면에서는 관찰하기 어려운 소집단 협동학습 내의 집단적인 역학관계를 파악하고자 한다.
The purpose of this thesis was to analyze communicational means of mathematical communication in perspective of languages and behaviors. Research questions were as follows; First, how are the characteristics of mathematical languages in communicating process of mathematical small group learning? Second, how are the characteristics of behaviors in communicating process of mathematical small group learning? The analyses of students' mathematical language were as follows; First, the ordinary language that students used was the demonstrative pronoun in general, mainly substituted for mathematical language. Second, students depended on verbal language rather than mathematical representation in case of mathematical communication. Third, quasi-mathematical language was mainly transformed in upper grade level than lower grade, and it was shown prominently in shape and measurement domain. Fourth, In mathematical communication, high level students used mathematical language more widely and initiatively than mid/low level students. Fifth, mathematical language use was very helpful and interactive regardless of the student's level. In addition, the analyses of students' behavior facts were as follows; First, students' behaviors for problem-solving were shown in the order of reading, understanding, planning, implementing, analyzing and verifying. While trials and errors, verifying is almost omitted. Second, in mathematical communication, while the flow of high/middle level students' behaviors was systematic and process-directed, that of low level students' behaviors was unconnected and product-directed.