24-Epibrassinolide Modulate Cellular and Organogenic Response of Explants of Brassica Species, in vitro Culture

  • Rocha Andrea da S.R. (Centro de Biotecnologia e, UFPel. Campus Universitario) ;
  • Coutinho Camila M. (Centro de Biotecnologia e, UFPel. Campus Universitario) ;
  • Braga Eugenia J.B. (Departamento de Botanica da Universidade Federal de Pelotas, UFPel. Campus Universitario) ;
  • Peters Jose A. (Departamento de Botanica da Universidade Federal de Pelotas, UFPel. Campus Universitario) ;
  • Binsfeld Pedro Canisio (Departamento de Botanica da Universidade Federal de Pelotas, UFPel. Campus Universitario)
  • Published : 2005.09.01

Abstract

Brassinosteroids are steroidal plant hormones and are known to modulate physiological and cellular response in a wide range of plant species. Considerable insights has been achieved of the physiological role of brassinosteroid in Brassica species in the past few years, but their effect on direct organogenesis has not been extensively studied. In this sense, under optimal basal media and growth conditions we tested the cellular and organogenic response of 24-epibrassinolide (EBL) in a variable concentration (0.1 to $5.0\;{\mu}M$) and Zeatin (Z) (1.0 to $100\;{\mu}M$) and their synergic effect on hypocotyl explants of cauliflower and broccoli. The isolated EBL accelerated cell elongation and promotes direct organogenesis. One micromolar EBL + $10\;{\mu}M$ of Z was the most efficient combination for cell elongation, cell differentiation as well as for organogenesis. A suppressing effect on root induction was confirmed for all the tested hormone levels. The general results indicate a synergic effect of EBL-Z and EBL potentates Zeatin activity, at least in certain tissues. Besides de genetic factors, we can speculate that the natural hormone concentration in the explants might affect the responses by application of exogenous growth regulators. Experiments with new plant growth regulators, like brassinolide, are important aiming to maximize or accelerate plant regeneration for in vitro multiplication or for genetic transformation.

Keywords

References

  1. Azpeitia A, Chan JL, Saenz L, Orpeza C (2003) Effect of 22(S),23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. The J Hortic Sci Biotech 78: 591-596 https://doi.org/10.1080/14620316.2003.11511669
  2. Bellincampi D Morpurgo G (1988) Stimulation of growth in Daucus carota L. cell cultures by brassinosteroid. Plant Sci 54: 153-156 https://doi.org/10.1016/0168-9452(88)90094-5
  3. Bishop GJ (2003) Brassinosteroid mutants of crops. J Plant Growth Regul 22: 325-335 https://doi.org/10.1007/s00344-003-0064-1
  4. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Bioi 49: 427-451 https://doi.org/10.1146/annurev.arplant.49.1.427
  5. Clouse SD(1996) Molecular genetic studies confirm the role of brassinosteroides in plant growth and development. Plant J 10: 1-8 https://doi.org/10.1046/j.1365-313X.1996.10010001.x
  6. Clouse SD, Zurek DM (1991) Molecular analysis of brassinolide action in plant growth and development. In: Cutler HG, Yokota T, Adam G (eds), Brassinosteroids chemistry, bioactivity, and applications, American Chemical Society, Wash-ington D.C, pp 122-140
  7. Dewitte W, Riou-Khamlichi C, Scofield S, Healy JMS, Jacqmard A, Kilby NJ, Murray JAH (2003) Altered cell cycle distribution, hyperplasia, and inhibited differentiation in Arabidopsis caused by the D-type cyclin CYCD3. Plant Cell 15: 79-92 https://doi.org/10.1105/tpc.004838
  8. Dhaubhadel S, Browning KS, Gallie DR, Krishna P (2002) Brassinosteroid functions to protect the translational machinery and heat-shock protein synthesis following thermal stress. Plant J 29: 681-691 https://doi.org/10.1046/j.1365-313X.2002.01257.x
  9. Friedrichsen D, Chory J (2001) Steroid signaling in plants: from the cell surface to the nucleus. Bioessays23: 1028-36 https://doi.org/10.1002/bies.1148
  10. Gaudinova A, Sussenbekova H, Vojtechova M. Karninek M, Eder J, Kohout L (1995) Different effects of 2 brassinosteroids on growth, auxin and cytokinin content in tobacco callus-tissue. Plant Growth Regul 17:121-126 https://doi.org/10.1007/BF00024171
  11. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth prornotinq steroid isolated from Brassica napus pollen. Nature 281: 216-217 https://doi.org/10.1038/281216a0
  12. Hu Y, Bao F, Li J (2000) Promotive effects .of brassinosteroids on cell division involves a distinct CycD30-induction pathway in Arabidopsis. Plant J 24: 693-701 https://doi.org/10.1046/j.1365-313x.2000.00915.x
  13. Kalinich JF, Mandava NB, Todhunter TA (1935) Relationship of nucleic acid metabolism to brassinolide-induced responses in beans. J Plant Physiol 120: 207-214
  14. Khripach V, Zhabinskii V, de Groot A (2000) Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI Century. Ann Bot 86: 441-447 https://doi.org/10.1006/anbo.2000.1227
  15. Kinoshita T, Cano-Delgado A, Seto H, Hiranuma S, Fujioka S, Yoshida S, Chory J (2005) Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433: 167-71 https://doi.org/10.1038/nature03227
  16. Lu Z, Huang M, Ge DP, Yang YH, Cao XN, Qin P, She JM (2003) Effect of brassinolide on callus growth and regener-ation in Spattina patens (Poaceae), Plant Cell Tiss Org Cult 73: 87-89 https://doi.org/10.1023/A:1022665210113
  17. Miyazawa Y, Nakajima N, Abe1 T, Sakai A, Fujioka S, Kawano S, Kuroiwa T, Yoshida S (2003) Activation of cell proli-feration by brassinolide application in tobacco BY-2 cells: effects of brassinolide on cell multiplication, cell-cycle-related gene expression, and organellar DNA contents. J Exp Bot 54: 2669-2678 https://doi.org/10.1093/jxb/erg312
  18. Morillon R, Catterou M, Sangwan RS, Sangwan BS, Lassalles JP (2001) Brassinolide may control aquaporin activities in Arabidopsis thaliana. Planta 212: 199-204 https://doi.org/10.1007/s004250000379
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Mussig C, Shin GH, Altmann T (2003) Brassinosteroids Promote Root Growth in Arabidopsis. Plant Physiol 133: 1261-1271 https://doi.org/10.1104/pp.103.028662
  21. Nakajima N, Shida A, Toyama S (1996) Effects of brassinosteroid on cell division and colony formation of Chinese cabbage mesophyll protoplasts. Jpn J Crop Sci 65: 114-118 https://doi.org/10.1626/jcs.65.114
  22. Oh MH (2003) Brassinosteroids Accelerate the Rate of Cell Division in Isolated Petal Protoplasts of Petunia hybrida. J Plant Biotech 5: 63-67
  23. Pullman GS, Zhang Y, Phan BH (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22: 96-104 https://doi.org/10.1007/s00299-003-0674-x
  24. Sasse JM (1989) Using PEST to study the interactions of bras-sinolide and other natural plant growth regulators. Proc Plant Growth Regul Soc Am 16: 82-87
  25. Sasse JM (2003) Physiological actions of Brassinosteroids: An Update. J Plant Growth Reg 22: 276-288 https://doi.org/10.1007/s00344-003-0062-3
  26. Sasaki H (2002) Brassinolide promotes adventitious shoot rege-neration from cauliflower hypocotyl segments. Plant Cell Tiss Cult Org Cult 7: 111-116
  27. Sathiyamoorthy P, Nakamura S (1990) In vitro root induction by 2,4-epibrassinolide on hypocotyl segments of soybean (Gly-cine max (L.) Merr.). Plant Growth Reg 9: 73-76 https://doi.org/10.1007/BF00025281
  28. Schaefer S, Medeiro SA, Ramirez JA, Galagovsky LR, Pereira-Netto AB (2002) Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple root-stock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep 20: 1093-1097 https://doi.org/10.1007/s00299-002-0442-3
  29. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassino-steroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131: 287-297 https://doi.org/10.1104/pp.013029
  30. Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels, Plant Physiology 135: 2196-2206 https://doi.org/10.1104/pp.104.043034