DOI QR코드

DOI QR Code

The Role of Nitric Oxide on the Growth Regulation of Chinese Cabbage (Brassica campestris L.) Primary Leaves

배추 (Brassica campestris L.) 제 1엽의 생장조절에 대한 Nitric Oxide의 역할

  • Ham Jeong-Hun (Department of Biological education, Graduate School, Kangwon National University) ;
  • Jin Chang-Duck (Division of Life Sciences, Kangwon National University)
  • 함정훈 (강원대학교 교육대학원) ;
  • 진창덕 (강원대학교 생명과학부)
  • Published : 2005.12.01

Abstract

The possible role of nitric oxide (NO)-induced cell division was investigated to explain the physiologycal effects of a NO donor, sodium nitroprusside (SNP) on the growth of primary leaves in chinese cabbage seedling plants. Exogenous treatment of SNP to chinese cabbage plants for 8 days at different concentrations (0, 200, 500 and 1000 ${\mu}M$) affected the leaf growth in a concentration-dependent manner, showing a maximum growth at $200\;{\mu}M$. In accordance with leaf growth responses, the chlorophyll and soluble protein contents increased strongly to 142% and 134% of control at $200\;{\mu}M$ SNP, respectively. However, a very little decrease in chlorophyll and a 13%> decrease in protein were observed at $1000\;{\mu}M$ SNP. In addition, the content of DNA and RNA also increased maximumly to 142% and 139% of the control at $200\;{\mu}M$ SNP, respectively, whereas they decreased to 80% and 84% of the control at $1000\;{\mu}M$ SNP. With respect to the development of enzymes related to cell wall synthesis, $200\;{\mu}M$ SNP led to the maximum activities in both phenylalanine ammonia-lyase (212% of the control) and guaiacol peroxidase (134% of the control). However, the activities of both enzymes were not modified significantly at $1000\;{\mu}M$ SNP. In conclusion, these results suggest that the enhancement of leaf growth in chinese cabbage plants by SNP at the effective concentration was probably due to the NO ability in the induction of cell division.

배추 유식물 제 1엽의 생장에 미치는 sodium nitroprusside(SNP: NO 공여체)의 생리적 효과를 NO에 의한 세포 분열조절의 가능성 수준에서 조사하였다. 배추 유식물에 서로 다른 농도의 SNP (0, 200, 500 및 $1000\;{\mu}M$)를 8일간 처리하고 배양한 결과 $200\;{\mu}M$ SNP 농도에서 최대 잎 생장을 보이면서 처리농도 의존 방식으로 잎의 생장에 영향을 끼쳤다. 잎의 생장반응과 일치하여, 잎의 엽록소 및 수용성 단백질 함량은 $200\;{\mu}M$농도에서 최대로 증가하여 각각 대조구의 142%와 134%수준을 보였으나, 오히려 $1000\;{\mu}M$처리농도에서는 엽록소의 경우 미미한 감소와 그리고 단백질 함량에서는 13%의 감소가 일어났다. 게다가, 잎 조직의 DNA와 RNA 함량 역시 $200\;{\mu}M$ 처리시 최대로 증가하여 각각 대조구의 142% 및 139% 수준을 보였으나, 반면에 $1000\;{\mu}M$ 농도에서는 각각 대조구의 80% 및 84% 수준까지 감소되었다. 세포벽 합성과 관련된 효소 활성도 변화에서 phenylalanine ammonia-lyase와 guaiacol peroxidase 활성도는 $200\;{\mu}M$ SNP 처리시 대조구에 비해 각각 최대 212%와 134% 증가 하였으나, $1000\;{\mu}M$ 농도에서는 두 효소 활성도 모두 유의한 변화를 보이지 않았다. 결론적으로, 이들 결과는 효과적인 농도에서의 SNP 처리에 의한 배추 제 1엽의 생장 촉진 현상은 세포분열 유도에 대한 NO의 능력에 기인될 수 있음을 제시하는 것이다.

Keywords

References

  1. Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1-5 https://doi.org/10.1104/pp.24.1.1
  2. Beligni MV, Fath A, Bethke PC, Lamattina L, Jones RL (2002) Nitric Oxide acts as an antioxidant and delay programmed cell deth in barley aleurone layers. Plant Physiol 129: 1642-1650 https://doi.org/10.1104/pp.002337
  3. Beligni MV, Lamattina L (2001) Nitric oxide in plant: the history is just beginning. Plant, Cell and Environ 24: 267-278 https://doi.org/10.1046/j.1365-3040.2001.00672.x
  4. Beligni MV, Lamattina L (2000) Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210: 215-221 https://doi.org/10.1007/PL00008128
  5. Bradford MM (1976) A rapid and sensitive method for the quantiation of microgram quantities of protein utilizing the principle of protein-dye biniding. Anal Biochem 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  6. Carpin S, Crevecoeur M, Meyer MD, Simon P, Greppin H, Penel C (2001) Identification of a $Ca^{2+}-pectate $ binding site on an apoplastic peroxidase. The Plant Cell 13: 511-520 https://doi.org/10.2307/3871403
  7. Christensen JH, Bauw G, Welinder KG, Montagu MV, Boerjan W (1998) Purification and characterization of peroxidase correlated with lignification in poplar xylem. Plant Physiol 118: 125-135 https://doi.org/10.1104/pp.118.1.125
  8. Gouvea CMCP, Souza JF, Magalhaes ACN, Martins IS (1997) NO-releasing substances that induce growth elongation in marize root segments. Plant Growth Regul 21: 183-187 https://doi.org/10.1023/A:1005837012203
  9. Hung KT, Kao CH (2003) Nitric Oxide counteracts the senescence of rice leaves induced by abscisic acid. Journal of Plant Physiol 160: 871-879 https://doi.org/10.1078/0176-1617-01118
  10. Ignarro LJ (1990) Biosynthesis and metabolism of endothelium derived nitric oxide. Annu Rev of Pharmacol and Toxicol 30: 535-560 https://doi.org/10.1146/annurev.pa.30.040190.002535
  11. Keely JE, Fotheringham CJ (1997) Trace gas emissions and smoke-induced seed germination. Science 276: 1248-1250 https://doi.org/10.1126/science.276.5316.1248
  12. Lange BM, Lapierre C, Sanderman H (1995) Elicitor-induced spruce stress lignin - Structural similarity to early developmental lignins. Plant Physiol 108: 1277-1287 https://doi.org/10.1104/pp.108.3.1277
  13. Laxalt AM, Beligni MV, Lamattina L (1997) Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans. Eur J Plant Pathol 73: 643-651
  14. Leshem YY, Haramaty E (1996) The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pusum sativum L. foliage. Plant Physiol 148: 258-266 https://doi.org/10.1016/S0176-1617(96)80251-3
  15. Leshem YY, Wills BH, Ku VVV (1998) Evidence for the fuction of the free radical gas-nitric oxide(NO)- as an endogenous maturation and senescence regulation factor in higher plant. Plant Physiol 36: 825-833
  16. Malyshev I, Manukhina E, Golubeva L (1999) NO paradox in adaptation of the organism. Acta Physiologia Scandinava 167: 91
  17. Monties B (1989) Ugnins. In PM Dey, JB Harborne, eds, Methods in Plant Biochemistry, Vol. 1, Academic Press, London, pp. 113-157
  18. Nieman RH, Poulsen LL (1962) Spectrophotometric estimation of nucleic acid. Plant Physiol 38: 31-35
  19. Ninnemann H, Maier J (1996) Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of Neurospora crassa. Photochem and Photobiol 64: 393-398 https://doi.org/10.1111/j.1751-1097.1996.tb02477.x
  20. Pagnussat GC, Lanteri ML, Lombarbo MC, Lamattina L (2004) Nitric Oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development. Plant Physiol 135: 279-286 https://doi.org/10.1104/pp.103.038554
  21. Pagnussat GC, Simontacchi M, Puntarub S, Lamattina (2002) Nitric oxide is required for root organogenesis. Plant Physiol 129: 954-956 https://doi.org/10.1104/pp.004036
  22. Polle A, Otter T, Seifert F (1994) Apoplastic peroxidase and lignification in needles of Norway Spruce(Picea abies L.). Plant Physiol 106: 53-60 https://doi.org/10.1104/pp.106.1.53
  23. Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier HA, Valpuesta V (2000) A tomato peroxidase involved in the synthesis of lignin and suberin. Plant Physiol 122: 1119-1128 https://doi.org/10.1104/pp.122.4.1119
  24. Ribero EA JR, Cunha FQ, Tamashiro WMSC, Martins IS (1999) Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells. FEBS Letters 445: 283-286 https://doi.org/10.1016/S0014-5793(99)00138-6
  25. Schopper P, Mohr H (1972) Phytochrome-mediated induction of phenylalanine ammonia-lyase in mustard seedlings. Plant Physiol 49: 8-10 https://doi.org/10.1104/pp.49.1.8
  26. Uchicda A, Jagendorf AT, Hibino T, Takabe T, Takabe T (2002) Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci 163: 515-523 https://doi.org/10.1016/S0168-9452(02)00159-0
  27. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49: 585-609 https://doi.org/10.1146/annurev.arplant.49.1.585
  28. Zucker M (1969) Induction of phenylalanine ammonia-lyase in xanthium leaf disks - Photosynthetic requirement and effect of daylength. Plant Physiol 44: 912-922 https://doi.org/10.1104/pp.44.6.912