데드 타임 없는 공간 벡터 전압 변조 인버터에 관한 연구

A Study on the Space Vector PWM Inverter without Dead Time

  • 서일수 (인텍FA연구원) ;
  • 송의호 (창원대 공과대학 제어계측공학과)
  • 발행 : 2005.02.01

초록

전압형 인버터에서 데드 타임은 직류단 단락을 방지하기 위하여 필요하다. 데드 타임 효과는 출력 전압, 출력 전류의 왜곡으로 나타난다. 최근 많은 논문에서 데드 타임 보상 방법에 대한 연구가 이루어졌다. 본 논문에서는 데드타임을 보상하는 것이 아니라 데드 타임이 없는 인버터를 제안한다. 부하전류를 측정할 필요도 없으며 데드 타임보상을 위한 계산도 필요 없다. 이는 인버터의 각 레그에 트랜스포머를 추가함으로써 가능하다. 제안된 방법의 각 모드 해석이 선행되고 타당성을 위한 시뮬레이션 결과가 제시된다.

In a voltage source inverter, the dead time is necessary to prevent short circuits in the dc link. The dead time effect appears as a distortion of output voltages and currents. In recent years, the dead time compensation methods have been investigated in many literatures. This paper presents not the dead time compensation by sensing and calculation but the dead time elimination. The proposed inverter system doesn't need to sense load current and to calculate dead time. Adding some transformers to each leg, dead times in the inverter system are eliminated automatically. The proposed method is analyzed on each mode and verified through simulation results.

키워드

참고문헌

  1. R. C. Dodson, P. D. Evans, H. T. Yazdi and S. C. Harley, 'Compensating for dead time degradation of PWM inverter waveforms', in Proc. Inst. Elect. Eng. B, Vol. 137, No.2, pp.73-81, 1990
  2. S. G. Jeong and M. H. Park, 'The analysis and compensation of dead-time effects in PWM inverters', IEEE Trans. on Ind. Electron, Vol. 38, No.2, pp. 108 -114, Apr. 1991 https://doi.org/10.1109/41.88903
  3. T. Sukegawa, K. Kamiyama, K. Mizuno, T. Matsui, and T. Okuyarna, 'Fully digital, vector-controlled PWM VSI -fed AC drives with an inverter dead-time compensation strategy', IEEE Trans. on Ind. Applicat, Vol. 27, No.3, pp. 552-559, May/June 1991
  4. J. W. Choi and S. K. Sul, 'A new compensation strategy reducing voltage/current distortion in PWM VSI systems operating with low output voltages', IEEE Trans. on Ind. Applicat, Vol. 31, pp. 1001-1008, Sep./Oct, 1995 https://doi.org/10.1109/28.464512
  5. J. W. Choi and S. K. Sul, 'Inverter output voltage synthesis using novel dead time compensation', IEEE Trans. on Power Electron, Vol. 11, No.2, pp. 221-227, Mar. 1996 https://doi.org/10.1109/63.486169
  6. A. R. Munoz and T. A. Lipo, 'On-line dead-time compensation technique for open-loop PWM-VSI drives', IEEE Trans. on Power Electron, Vol. 14, No. 4, pp. 683-689, July 1999 https://doi.org/10.1109/63.774205
  7. N. Urasaki, T. Senjyu, K. Uezato and T. Funabashi, 'On-line dead-time compensation method for permanent magnet synchronous motor drive', in IEEE ICIT'02 Conf, pp. 268-273, 2002
  8. H. S. Kim, K H. Kim and M. J. Youn, 'On-line dead-time compensation method based on time delay control', IEEE Trans. on Contr. Syst. Technol, Vol. 11, No.2, pp. 279-285, Mar. 2003 https://doi.org/10.1109/TCST.2003.809251
  9. D. Leggate and R. J. Kerkman, 'Pulse-based dead-time compensator for PWM voltage inverters', IEEE Trans. on Ind. Electron, Vol. 44, No.2, pp. 191-197, Apr. 1997 https://doi.org/10.1109/41.564157
  10. J. S. Choi, J. Y. Yoo, S. W. Lim and Y. S. Kim, 'A novel dead time minimizaton algorithm of the PWM inverter', in IEEE IAS Annu Meeting, Conf. Rec, Vol. 4, pp. 2188-2193, 1999
  11. C. Attaianese and G. Tomasso, 'Predictive Compensation of dead-time effects in VSI feeding induction motors', IEEE Trans. on Ind. Applicat., Vol. 37, No.3, pp. 856-863, May/June 2001 https://doi.org/10.1109/28.924768
  12. T. Summers and R. E. Betz, 'Dead-time issues in predictive current control', in IEEE IAS Annu Meeting, Conf. Rec, pp. 2086-2093, 2002
  13. R. B. Sepe and J. H. Lang, 'Inverter nonlinearities and discrete-time vector current control', IEEE Trans. on Ind. Applicat, Vol. 30, No.1, pp. 62-70, Jan./Feb. 1994 https://doi.org/10.1109/28.273622
  14. A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and E. R. C. da Silva, 'Dead-time compensation in the zero -crossing current region', in IEEE PESC'03 Annu. Conf, pp. 1937-1942, 2003
  15. A. Trzynadlowski and S. Legowski, 'Minimum-loss vector PWM strategy for three-phase inverter', IEEE Trans. on Power Electron, Vol. 9, No.1, pp. 26-34, Jan. 1994 https://doi.org/10.1109/63.285490
  16. D. G. Holmes, 'The significance of zero space vector placement for carrier-based PWM schemes', IEEE Trans. on Ind Applicat, Vol. 32, No.5, pp. 1122-1129, Sep/Oct. 1996 https://doi.org/10.1109/28.536874