마이크로믹서에의 응용을 위해 PMN-PT를 이용한 경계면과 수직방향 방사형 믹서

Cross-sectional Radiation Type Mixer into the Boundary Surface using PMN-PT for Micromixing

  • 발행 : 2005.01.01

초록

마이크로믹서는 Bio-MEMS 혹은 μ-TAS 분야에서 중요한 역할을 수행한다. 혼합은 두 유체의 난류 상태와 상호확산에 의해 발생된다. 마이크로채널 내에서는 레이놀즈수가 작기 때문에 (Re << 2000) 난류가 발생되기 어려우므로 주로 상호확산에 의해서만 혼합된다. 따라서 두 유체가 적정하게 혼합되기 위해서는 긴 채널이 요구된다. 본 논문에서는 혼합에 소요되는 길이를 줄이기 위해서 PMN-PT에 의해 발생된 초음파에 의해 혼합되는 새로운 믹서를 제안하였다. 챔버 내에 발생된 초음파는 두 유체에 의해 생성된 경계면과 수직한 방향으로 방사된다. 사용된 두 유체는 상하방향으로 경계층을 이룬다. 혼합 상태는 NaOH와 페놀프탈렌의 반응에 따른 색상 변화론 관찰하여 측정하였다.

A micromixer plays an important role in Bio-MEMS or μ-TAS. Mixing is generally generated by turbulence and interdiffusion of two fluids. Because of low Reynolds number values (Re << 2000) within microchannels, it is difficult to generate turbulence, and consequently mixing mainly depends on interdiffusion. So, channel distance is often prohibitively long to mix two different fluids properly. To reduce this mixing length, we proposed a new mixer for micromixing in which two fluids were effectively mixed by an ultrasonic wave generated by PMN-PT. The ultrasonic wave was radiated into a chamber In the cross-sectional direction into the boundary surface formed by two fluids. The two fluids were positioned one on top of the other. The mixing state was measured by observing the color of samples due to the reaction of NaOH and phenolphthalein.

키워드

참고문헌

  1. R. Miyake, T.S.J. Lammerink, M. Elwenspoek, J.H.J. Fluitman, 'Micromixer with fast diffusion', MEMS'93, Florida, pp.248-253, 1993 https://doi.org/10.1109/MEMSYS.1993.296914
  2. Branebjerg, B. Fabius, P. Gravesen, 'Application of miniature analyzers: from microfluidic components to TAS', Micro Total Analysis Systems '94, Kluwer Academic Publishers, Dordrecht, pp. 141-151, 1995
  3. Stroock, A.D., Dertinger, S.K.W, Ajdari, A., Mezic, I., Stone, H.A. and Whitesides, G.M., 2002, 'Chaotic Mixer for Microchannels,' Science, Vol. 295, pp. 647-651 https://doi.org/10.1126/science.1066238
  4. Z. Yang, H. Goto, M. Matsumoto, T. Yada, 'Micromixer incorporated with piezoelectrically driven valveless micropump', Micro Total Analysis Systems '98, Kluwer Academic Publishers, Dordrecht, pp. 177-180, 1998
  5. W. L. M. Nyborg, Acoustic streaming, in: W.P. Mason (Ed.), Physical Acoustics, vol. 2B, Academic Press, New York, pp. 265-331, 1965
  6. X. Zhu, E.S. Kim, 'Microfluidic motion generation with acoustic waves', Sens. Actuators A 66, pp. 355-360, 1998 https://doi.org/10.1016/S0924-4247(97)01712-3
  7. H. Monnier, A. -M, Wilhem, H. Delmas, 'Influence of ultrasound on mixing on the molecular scale for water and viscous liquids', Ultrasonics Sonochemistry 6, pp. 67-74, 1999 https://doi.org/10.1016/S1350-4177(98)00034-0
  8. Z. Yang, H. Goto, M. Matsumoto, R. Maeda, 'Active micro mixer for microfluidic systems using PZT generated ultrasonic vibration', Electrophoresis 21, pp. 116-119, 2000 https://doi.org/10.1002/(SICI)1522-2683(20000101)21:1<116::AID-ELPS116>3.0.CO;2-Y
  9. Z. Yang, S. Matsumoto, H. Goto, M. Matsumoto, R. Maeda, 'Ultrasonic micromixer for microfluidic systems', Sens. Actuators A 93, pp. 266-272, 2001 https://doi.org/10.1016/S0924-4247(01)00654-9