패치 CEGI를 이용한 메쉬 워터마킹

A Mesh Watermarking Using Patch CEGI

  • 이석환 (경북대학교 전기전자컴퓨터학부) ;
  • 권기룡 (부산외국어대학교 디지털정보공학부)
  • Lee Suk-Hwan (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Kwon Ki-Ryong (Division of Digital and Information Engineering, Pusan University of Foreign Studies)
  • 발행 : 2005.01.01

초록

본 논문에서는 복소 가우시안 영상 (Complex Extended Gaussian Image, CEGI)을 이용한 3D 메쉬 모델의 블라인드 워터마킹을 제안하였다. CEGI는 메쉬의 법선 벡터 분포를 나타내는 3차원 방향 히스토그램으로, 이는 메쉬의 면적 및 임의의 기준점에 대한 거리로 표현되는 복소 가중치의 합으로 구현된다. 제안한 방법에서는 먼저 3D 메쉬 모델을 모델의 형상에 따라 여러개의 패치로 분할한다. 그리고 워터마크를 삽입하기 위하여 각 패치별로 CEGI를 구한 후에 복소 가중치의 크기가 큰 셀을 선택하여, 각 패치 CEGI 상에 통일한 순위의 셀들에 각각 삽입한다. 그리고 패치의 중점 좌표 및 셀 순위표를 이용하여 원 메쉬 모델없이 워터마크를 추출한다. 이 때, 회전과 같은 아핀 변환된 모델에서는 오일러 각을 이용한 재배열 과정을 수행한다. 실험 결과에서 제안한 방법이 절단, 아핀 변환, 및 랜덤 잡음 첨가등의 기하학적 공격 및 메쉬 간단화 등의 위상학적 공격에 견고하였으며 또한 워터마크의 비가시성을 확인하였다.

We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

키워드

참고문헌

  1. I. Cox, J. Kilian, T. Leighton and T. Shamoon, 'Secure Spread Spectrum Watermarking for Multimedia,' IEEE Transactions on Image Processing, Vol. 6, pp. 1673-1687, Dec. 1997 https://doi.org/10.1109/83.650120
  2. W. Zhu, Z. Xiong, and Y.-Q. Zhang, 'Multiresolution watermarking for image and video,' IEEE Trans. on Circuits and Systems for Video Technology, vol. 9, no. 4, pp. 545-550, June 1999 https://doi.org/10.1109/76.767121
  3. ISO/IEC 14772-1, The virtual reality modeling language
  4. R. Ohbuchi, H. Masuda, and M. Aono, 'Watermarking three-dimensional polygonal models through geometric and topological modification,' IEEE JSAC, pp. 551-500, 1998 https://doi.org/10.1109/49.668977
  5. R. Ohbuchi, A. Mukaiyama, and S. Takahashi, 'A frequency-domain approach to watermarking 3D shapes,' Proc. of EUROGRAPHICS, pp. 373-382, 2002 https://doi.org/10.1111/1467-8659.t01-1-00597
  6. S. Kanai, H. Date, and T. Kishinami, 'Digital watermarking for 3D polygons using multiresolution wavelet decomposition,' Proc. of Sixth IFIP WG 5.2 GEO-6, pp. 296-307, Dec. 1998
  7. E. Praun, H. Hoppe, and A. Finkelstein, 'Robust mesh watermarking,' ACM SIGGRAPH, pp, 49-56, Aug. 1999 https://doi.org/10.1145/311535.311540
  8. O. Benedens, 'Geometry-based watermarking of 3D models,' IEEE CG&A, pp. 46-55, Jan./Feb. 1999 https://doi.org/10.1109/38.736468
  9. F. Cayre and B. Macq, 'Data hiding on 3D triangle meshes,' IEEE Trans. on Signal Processing, vol. 51, no. 4, pp. 939-949, April 2003 https://doi.org/10.1109/TSP.2003.809380
  10. S.-H. Lee, T.-S. Kim, B.-J. Kim, S.-G. Kwon, K.-R. Kwon, and K.-I. Lee, '3D polygonal meshes watermarking using normal vector distributions,' IEEE International Conference on Multimedia & Expo., vol. III. pp, 105-108, July 2003
  11. K.-R. Kwon, S.-G. Kwon, S.-H. Lee, T.-S. Kim, and K.-I. Lee, 'Watermarking for 3D polygonal meshes using normal vector distributions of patch,' IEEE International conference on Image Processing, vol. 2, 499-502, Sep. 2003 https://doi.org/10.1109/ICIP.2003.1246726
  12. S.B. Kang and K. Ikeuchi, 'The Complex EGI: A new representation for 3-D pose determination,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 15, no. 7, July 1993 https://doi.org/10.1109/34.221171
  13. N. Aspert, D. Santa-Cruz, and T. Ebrahimmi, 'MESH: Mesasuring errors between surfaces using the Hausdorff distance,' Proc. of the IEEE International Conference in Multimedia and Expo., vol. 1, pp. 705-708, Aug. 2002 https://doi.org/10.1109/ICME.2002.1035879
  14. http://www.physics.orst.edu/~bulatov/polyhedra/dual/ud30.html
  15. T. Kanai, MeshToSS Version 1.0.1, http://graphics.sfc.keio.ac.jp/MeshToSS/indexE.html