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Abstract

Age-related changes in bone metabolism are well established by biochemical markers of bone matrix in
serum and urine, but analysis of the residual bone matrix, which is still turning over, has not been in-
vestigated. In the present study, we measured in vivo rates of bone protein synthesis using a precursor-product
method based on the exchange of ’H from *H,O into amino acids. Four percent ’H,0 was administered
to mice in drinking water after intraperitonial (i.p) bolus injection of 99.9% ’H,0. Mice were divided into
the two groups: growing young mice were administered 4% ’H,0 for 12 weeks after an i.p bolus injection
at 5 week of age, whereas weight stable adult mice started drinking 4% “H,O 8 weeks later than the growing
group and continued 4% ’H.O drinking for 8 weeks. Mass isotopomer abundance in alanine from bone
protein was analyzed by gas chromatography/mass spectrometry. Body ’H,0 enrichments were in the range
of 1.88~2.41% over the labeling period. The fractional synthesis rates (ks) of bone protein were 2.000
+0.071%/d for growing mice and 0.243+0.014%/d for adult mice. These results demonstrate that the bone
protein synthesis rate decreases with age and present direct evidence of age-related changes in bone protein

synthesis.
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INTRODUCTION

Age-related changes in bonemetabolism have been
extensively investigated (1-6). These findings have been
established by measuring bone mineral density (BMD)
and the levels of biochemical markers, circulating by-
products of bone metabolism in serum and urine. However,
few studies have investigated the residual bone protein
turnover mainly owing to difficulties involved in mea-
suring it directly.

The use of isotope tracers of amino acids as incor-
porated markers during protein synthesis is an attractive
method to investigate the dynamic nature of bone remod-
eling. However, major problems remain in defining the
labeling of the true precursor for protein synthesis, i.e.
the aminoacyl- or iminoacyl-tRNA, due to the complex
subcellular organization of amino acid pools (7-9). Use
of surrogate amino acid (AA) pools, such as plasma AA,
or of a flooding dose approach, in which a large bolus
dose of labeled amino acid is given to label all free blood
and tissue amino acid pools to the same extent, have
been employed to attain equilibration of labels in the
precursor pool; however, the methods still suffer from
practical limitations (10). Another problem derives from
the very slow turnover rate of bone protein, which leads
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to label recycling and thus the underestimating of the
turnover rate (9-12).

A precursor-product approach has practical advantages
to overcome problems in defining a true precursor pool
of protein synthesis if isotopic enrichment (L.LE.) of the
biosynthetic precursor pool is held relatively constant
during the labeling period (13). However, continuous
long-term administration of a labeled substrate to main-
tain relatively constant LE. in the biosynthetic precursor
pool may be unfeasible for slow turnover proteins as the
cost of maintaining constant I.E. over a long time period
can be prohibitive.

Since Ussing (14) introduced the use of 2H20, a stable
isotope of water, in animals to measure rates of protein
renewal in 1941, *H;O has been used as a tracer to
measure the synthesis rates of fatty acids (15-17), choles-
terol (18), glucose (19-21), and DNA (17,22,23). Re-
cently, in vivo rates of protein synthesis have been mea-
sured in rodents (11,24) and humans (25) following ’H,0
ingestion based on the incorporation of “H from *H,O
into the C-H bonds of the amino acids through specific,
enzyme-catalyzed reactions (11,25). 2HzO can enter into
C-H bonds of free AA’s in the cell only through the
reactions of intermediary metabolism, but “H,O cannot
enter into AA’s that are present in peptide bonds or that
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are bound to transfer RNA. The presence of *H-label
in C-H bonds of protein-bound AA after ’H,0 admin-
istration therefore means that the protein was assembled
from AA that were in the free form during the period
of H,O exposure - ie. that the protein is newly syn-
thesized. In addition, essential AA’s may incorporate a
single hydrogen atom from body water into the « -car-
bon C-H bond, through rapidly reversible transamination
reactions. Non-essential AA’s, e.g. alanine, contain a
larger number of metabolically exchangeable C-H bonds
and are therefore expected to exhibit higher L.E. values
per molecule from ’H,0 (1.

’H,0 labeling provides many advantages allowing
continuous long-term labeling to attain constant isotopic
enrichment of the precursor pool in terms of reproducible
incorporation of ’H from ’H;O into the C-H bonds of
amino acids, the constancy of body 2HzO enrichments
over time without toxicities or side-effects, and the ease
of oral *H,O administration combined with the relatively
low cost of H,O.

In the present study, we measured the in vivo rate of
bone protein synthesis through ’H enrichment of the al-
anine pool during ’H,0 exposure to investigate age-
related changes in bone metabolism in mice.

MATERIALS AND METHODS

Materials

H,0 was purchased from Cambridge Isotope Labs
(Andover, MA, USA). Chemicals were purchased from
Sigma, Inc. (St. Louis, MO, USA), unless otherwise
stated.

Animals

Five-week-old female BC57Blk/6ksj mice (10~15 g,
Jackson Laboratories, Bar Harbor, ME, USA) were
housed five per cage at 22 ~24°C in an air-conditioned
chamber with a 12 hour light-dark cycle. Diet (Purina®
rodent chow) and water were provided ad-libitum. All
experimental procedures were performed in accordance
with the NIH guidelines for the care and use of labo-
ratory animals.

’H,0 administration protocol

The *H,O labeling protocol (22,26) consisted of an
initial intraperitoneal (i.p) injection of 99.9% H,0 to
achieve =2.5% body water enrichment (assuming the
total body water to be 60% of the body weight) followed
by administration of 4% “H,O in drinking water for the
duration of study. Mice were divided into the following
two groups: growing young mice were administered with
4% “H,0 for 12 weeks after i.p bolus injection at age
of 5 weeks, whereas weight stable adult mice started 4%

’H,0 drinking 8 weeks later than the growing young group
and continued 4% “H,O drinking for 8 weeks. Mice (n
=5 per each time point) were sacrificed every two weeks
over the labeling period by cervical dislocation. Serum
was collected longitudinally toestablish the time course
of body “H,O enrichments.

Isolation and hydrolysis of bone protein

The rear left femur was collected and was dissected
free of soft tissue and distal ends. Bone marrow and
trabecular bone were removed using a needle with a
sharp cutting surface. After washing 3 times with water,
the bone was splintered and powdered under liquid N
in a Spex mill and defatted with chloroform:methanol
(1:1, v:v). After drying, the powdered bone was sub-
jected to acid hydrolysis in 6 N HC1 (110°C, 24 hr). The
hydrolyzed AA were dried under N, gas and derivatized
to N-acetyl, N-methyl ester for analysis by gas chromatog-
raphy/mass spectrometry (GC/MS) (13).

Measurement of “H;O enrichment of body water

The *H,O enrichment of body water was measured by
a GC/MS on a ThermoFinnigan Trace gas chromatog-
raphy interfaced to a ThermoFinnigan PolarisQ ion trap
mass spectrometer (ThermoFinnigan, Austin, Texas, USA).
Briefly, the hydrogen atoms from the water were chemi-
cally transferred to acetylene by reaction with calcium
carbide in a sealed vial. Acetylene gas was then deri-
vatized by injection into another sealed vial containing
0.5 mL Br; (0.1 mM) dissolved in CCls (22,26). The re-
sulting tetrabromoethane was dissolved in CCls and was
analyzed by GC/MS, using a DB-1701 column (15 m X
0.25 mm X 0.25 pm; J&W, Folsom, CA, USA) with meth-
ane chemical ionization. The temperature programwas as
follows: initial temperature: 60°C, held for 1 min; the
first program rate: 50°C/min to 100°C, held for 3 min,
the second program rate: 50°C/min to 220°C, held for 2.5
min. The ions at m/z 265 and 266 were analyzed using
selected ion monitoring. The carrier gas was belium at
a column flow of 0.8 mL/min at 80°C. The splitless in-
jection mode was used.

Measurement of isotope abundance of alanine

The mass isotopomer abundance of alanine was an-
alyzed as the N-acetyl, N-methyl ester derivative (13).
The alanine derivative was analyzed at m/z 146 (MO)
and 147 (M1) by methane chemical ionization mode
using a R&x®-5MS (Restek, Bellefonte, PA, USA, cross-
bond® 5% diphenyl-95% dimethyl polysiloxane) capillary
column (30 m X 0.25 mm 1.D. < 0.25 um film thickness)
at the following temperature program: initial temper-
ature: 80°C, held for 1 min; program rate: 20°C/min to
280°C, held for 3 min. The carrier gas was helium at
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a column flow of 0.8 mL/min at 80°C. The splitless
injection mode was used.

The fractional synthesis or replacement rate (ks) of
bone protein was determined by application of the con-
tinuous labeling, precursor-product formula (7,13,27).

AA(protein),(LE.)
AY(LE.)

ks(d”)z—[ in(1- )] / time(d),
where AA(protein), represents the enrichment as atom
percent excess of the protein-bound AA measured at time
t and A represents the enrichment of amino acid at
the asymptotic or plateau value possible under the la-
beling conditions present. The average body ’H,0 en-
richment was used to calculate theoretical asymptotic en-
richment in alanine (A™) using standard mass isoto-
pomer distribution analysis (MIDA) formulae established
by Hellerstein et al. (11,27).

RESULTS

Body weight gain

The body weights of growing young mice gradually
increased from 16.6910.71 g to 24.64-0.97 g over the
12 week-labeling period (Fig. 1), which indicates that
the administration of 4% “H,O in drinking water did not
cause any physiological alterations. For the adult mice,
body weights remained relatively stable from 21.91+
0.93 g to 22.83£0.54 g for the subsequent 8 weeks of
labeling.

Body water enrichment attained

Body “HO enrichments in mice were measured by
GC/MS and were in the range of 1.88~2.41% over the
labeling period in both groups, indicating that the body
pool of *H;0 precursor maintained stable (Fig. 2). The
differences in “H,O enrichment between drinking water
and body water resulted from dilution with metabolic-
water produced endogenously by fuel oxidation as well
as residual moisture in the dry chow.
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Fig. 1. Body weights of mice maintained on 4% ’H,0 in
drinking water after baseline priming bolus. Values represent
mean = SE (n=5 per time point). @: growing young mice group,
O: adult mice group.

3.0
5 E g @
€ [
< 20 L) s '] i}
£
L
L
c
® 10 |
e}
o
T
~N
OO 1 1 1
0 5 10 15 20
Weeks

Fig. 2. Time course of body “H,O enrichments in mice main-
tained on 4% “H,O in drinking water after baseline priming
bolus. Values represent mean* SE (n=5 per time point). @:
growing young mice group, [1: adult mice group.

Bone protein synthesis rate

Fig. 3 shows the ’H enrichments of alanine released
on the hydrolysis of the femur bone. Fig. 4 depicts the
linear regression line from the natural logarithms of the
differences between the enrichment of alanine at plateau
possible under the labeling conditions present and the
mean enrichment of alanine released from bone. The
fractional synthesis rates (ks), estimated from the slopes
of the lines of Fig. 3 and 4 during labeling periods, were
2.000+=0.071%/d for growing young mice and 0.243+
0.014%/d for adult mice. After 8 weeks of labeling,
63.7% of bone protein was replaced with new bone pro-
tein in growing young mice. Aging decreased the newly
synthesized fraction of bone protein to 24.6% in adult
mice.

DISCUSSION

In the present study, we focused on the changes in
bone protein to investigate the effects of aging on bone
turnover. Previous studies (1-6) have demonstrated bone
loss with age mainly by monitoring changes in BMD
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Fig. 3. Label incorporation curves into alanine isolated from
bone protein in mice. Values represent mean*SE (n=5 per
time point). @: growing young mice group, [ adult mice
group.
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Fig. 4. Natural logarithms of the differences between the en-
richment of alanine at plateau possible under the labeling
conditions present and the mean enrichment of alanine released
from bone. The fractional synthesis rate is the negative of the
slope of the linear regression line fitted to the data. Values
represent mean = SE (n=5 per time point). @: growing young
mice group, m: adult mice group.

and circulating levels of biochemical markers. However,
these indicators have important limitations in reflecting
the life-long bone remodeling process. BMD represents
current skeletal status and requires sequential measure-
ments 12 to 24 months apart to identify significant bone
loss in humans (28-30). Biochemical markers have clin-
ical advantages in monitoring bone metabolism and treat-
ment efficacy (31-35). However, thus far biochemical
markers have not been of much clinical value due to
low sensitivity and specificity to bone (32,34). Moreover,
few biochemical markers are available for animal studies
and thereby changes in animal bone have been primarily
measured by BMD, bone volume, and histomorphometry
(4,6,36).

Some researchers have used an isotope-labeling ap-
proach to measure kinetic changes of physiologically im-
portant proteins with age. Balagopal et al. (37) examined
the effects of aging on in vivo synthesis of skeletal mus-
cle myosin heavy chain and sarcoplasmic protein in hu-
mans using a primed continuous infusion of PC-leucine.
A decline in the synthesis rate of mixed muscle protein
and whole body protein was observed from young to
middle age with no further change with advancing age.
An age-related decline of myosin heavy chain synthesis
rate was also observed with progressive decline occur-
ring from young, through middle, to old age, which was
also found in mitochondrial protein kinetics in human-
skeletal muscle (38). However, sarcoplasmic protein
synthesis did not decline with age. These observations
suggest that each protein has a specific kinetic pattern
with advancing age.

Numerous studies have measured the synthesis rate of
collagen from lung (39-42), heart (42,43), skeletal mus-
cle (44), skin (44,45), and bone (46-48) in rodents (42,

43,45,48) and humans (40,46,47) with isotope labeled
tracers. However, the kinetics of bone protein still re-
mains unclear owing to some practical constraints for
reliable kinetic measurement on bone protein, which has
a very slow turnover rate (10). Recently, a new method
using “H,O as a tracer has been developed to measure
rates of protein synthesis and successfully applied to
bone protein, skeletal muscle, and cardiac muscle in rats
(11), and plasma albumin in humans (25). The unique
features of H,O labeling, i.e. high reproducibility, safe-
ty, and low cost, permit full exploitation of the precursor-
product relationship, because constant labeling is feasible
for >4--5 half-lives of almost any protein of interest.
Thus, variable dilution within tRNA-AA pools can be
overcome and thereby the errors arising from extrapo-
lation with an alternative precursor pool may decline.

Babraj et al. (46) measured in vivo collagen synthesis
rate in human bone with a flooding dose method using
C-labeled proline. Although they observed differences
in the isotope incorporation rate in bone collagen by
sequential extracts, they failed to find an aging effect
on bone collagen and concluded that the difference in
bone between young and elderly people represents a
chemical or physical rather than biological phenomenon.

However, our results clearly demonstrate a dynamic
process of bone remodeling. Old bone matrix was con-
tinually replaced with newly synthesized protein. Bone
matrix protein was replaced exponentially in growing
young mice and fractional replacement occurred in a
linear pattern in adult mice. To our knowledge, the cur-
rent results provide clear evidence supporting age-related
changes in bone matrix.
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