Software Measurement by Analyzing Multiple Time-Series Patterns

다중 시계열 패턴 분석에 의한 소프트웨어 계측

  • Published : 2005.02.01

Abstract

This paper describes a new measuring technique by analysing multiple time-series patterns. This paper's goal is that extracts a really measured value having a sample pattern which is the best matched with an inputted time-series, and calculates a difference ratio with the value. Therefore, the proposed technique is not a recognition but a measurement. and not a hardware but a software. The proposed technique is consisted of three stages, initialization, learning and measurement. In the initialization stage, it decides weights of all parameters using importance given by an operator. In the learning stage, it classifies sample patterns using LBG and DTW algorithm, and then creates code sequences for all the patterns. In the measurement stage, it creates a code sequence for an inputted time-series pattern, finds samples having the same code sequence by hashing, and then selects the best matched sample. Finally it outputs the really measured value with the sample and the difference ratio. For the purpose of performance evaluation, we tested on multiple time-series patterns obtained from etching machine which is a semiconductor manufacturing.

본 논문에서는 다중 시계열 패턴을 분석하여 계측 값을 예측하는 방법에 관하여 기술한다. 본 논문의 목적은 표본패턴들 중에서 입력패턴과 가장 유사한 패턴을 찾은 다음 그 표본패턴이 가지는 실측값과의 오차율을 산출하는 것이다. 따라서 인식이 아니라 계측이며 하드웨어가 아닌 소프트웨어 기술을 제안하다. 본 논문에서 제안하는 방법은 초기화, 인식 및 계측 등의 단계로 구성된다. 초기화 단계에서는 중요도를 사용하여 인자들 각각의 가중치를 산출한다. 학습 단계에서는 수집된 표본패턴을 먼저 DTW와 LBG 알고리즘을 사용하여 각 인자별 독립적으로 군집화를 수행한 다음, 모든 표본패턴에 대하여 군집의 번호들로 구성된 코드열을 생성한다. 계측 단계에서는 입력패턴에 대한 코드열을 생성한 다음 해슁으로 표본패턴들 중에서 같은 코드열을 가지는 표본들을 찾고, 이 표본들 중에서 입력패턴에 가장 잘 정합되는 하나의 표본을 선택하다. 최종적으로 이 패턴이 가지고 있는 실측값과 오차율을 출력한다. 성능평가는 반도체생산장치 중에서 하나인 식각장치로부터 얻어진 자료에 적용하여 수행한다.

Keywords