Development of Analytical Model for Optimization of Dual Layer Phoswich Detector Length for PET

  • Chung Yong Hyun (Department of Nuclear Medicine, Samsung Medical Center, Samsung Biomedical Research Institute Sungkyunkwan University) ;
  • Choi Yong (Department of Nuclear Medicine, Samsung Medical Center, Samsung Biomedical Research Institute Sungkyunkwan University) ;
  • Choe Yearn Seong (Department of Nuclear Medicine, Samsung Medical Center, Samsung Biomedical Research Institute Sungkyunkwan University) ;
  • Lee Kyung-Han (Department of Nuclear Medicine, Samsung Medical Center, Samsung Biomedical Research Institute Sungkyunkwan University) ;
  • Kim Byung-Tae (Department of Nuclear Medicine, Samsung Medical Center, Samsung Biomedical Research Institute Sungkyunkwan University)
  • Published : 2005.02.01

Abstract

Small animal PET using a dual layer phoswich detector has been developed to obtain high and uniform spatial resolution. In this study, a simple analytic model to optimize the lengths of a dual layer phoswich detector was derived and validated by Monte Carlo simulation. For a small animal PET scanner with a 10㎝ ring diameter, the optimal length of the phoswich detector consisting of various crystal materials, such as LSO and LuYAP, were calculated analytically and validated using GATE. The detector module consisted of 8×8 arrays of crystals, with each phoswich detector element having a 2㎜×2㎜ sensitive area. The total crystal length was fixed to 20㎜. The optimal lengths of the phoswich detector layers, as functions of the crystal materials and order, conveniently derived by the analytic equation, showed good agreement with those estimated by the time consuming simulation. The simple analytical model can be used for the fast and accurate design of an optimal phoswich detector for small animal PET to achieve high spatial resolution and uniformity.

Keywords

References

  1. Y. H. Chung, T. Y. Song, and Y. Choi, 'Nuclear medicine imaging instrumentations for molecular imaging', Korean Journal of Nuclear Medicine, Vol. 38, No. 2, pp. 131-139, 2004
  2. R. S. Balaban, and V. A. Hampshire, 'Challenges in small animal noninvasive imaging', ILAR Journal, Vol. 42, pp. 248-262, 2001 https://doi.org/10.1093/ilar.42.3.248
  3. R. Myers, and S. Hume, 'Small animal PET', European Neuropsychopharmacology, Vol. 12, pp.545-555, 2002 https://doi.org/10.1016/S0924-977X(02)00103-7
  4. A. F. Chatziioannou, S. R. Cherry, Y. Shao, R. W. Silverman, K. Meadors, T. H. Farquhar, M. Pedarsani, and M.E. Phelps, 'Performance evaluation of microPET: a high-resolution Lutetium oxyorthosilicate PET scanner for animal imaging', Journal of Nuclear Medicine, pp. 1164-1175, 1999
  5. P. Bartzakos, and C. L. Thompson, 'A depth-encoded PET detector', IEEE transactions of Nuclear Science, Vol. 38, pp. 732-738, 1991 https://doi.org/10.1109/23.289382
  6. W. W. Moses, S. E. Derenzo, C. L. Melcher, and R. A. Manente, 'A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction', IEEE transactions of Nuclear Science, Vol. 42, pp. 1085-1089, 1995 https://doi.org/10.1109/23.467744
  7. C. Moisan, G. Tsang, J. G. Rogers, and E. M. Hoskinson, 'Performance studies of a depth encoding multicrystal detector for PET', IEEE transactions of Nuclear Science, Vol. 43, pp. 1926-1931, 1996 https://doi.org/10.1109/23.507248
  8. L. R. MacDonald, and M. Dahlbom, 'Depth of interaction for PET using segmented crystals', IEEE transactions of Nuclear Science, Vol. 45, pp. 2144-2148, 1998 https://doi.org/10.1109/23.708325
  9. R. S. Miyaoka, T. K. Lewellen, H. Yu, and D. L. MacDaniel, 'Design of a depth of interaction (DOI) PET detector module', IEEE transactions of Nuclear Science, Vol. 45, pp. 1069-1073,1998 https://doi.org/10.1109/23.681980
  10. H. Murayama, H. Ishibashi, H. Uchida, T. Omura, and T. Yamashita, 'Depth encoding multicrystal detectors for PET', IEEE transactions of Nuclear Science, Vol. 45, pp. 1152-1157, 1998 https://doi.org/10.1109/23.681994
  11. S. Yamamoto, and H. Ishibashi, 'A GSO depth of interaction detector for PET', IEEE transactions of Nuclear Science, Vol. 45, pp. 1078-1082, 1998 https://doi.org/10.1109/23.681982
  12. J. Seidel, J. J. Vaquero, S. Siegel, W. R. Gandler, and M. V. Green, 'Depth Identification accuracy of a three layer phoswich PET detector module', IEEE transactions of Nuclear Science, Vol. 46, pp. 485-490, 1999 https://doi.org/10.1109/23.775567
  13. U. Heinrichs, U. Pietrzyk, and K. Ziomons, 'Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3', IEEE transactions of Nuclear Science, Vol. 50, pp. 1428-1432, 2003 https://doi.org/10.1109/TNS.2003.817409
  14. Y. Shao, R. W. Silverman, R. Farrell, L. Cirignano, R. Grazioso, K. S. Shah, G. Vissel, M. Clajus, T. O. Tumer, and S. R. Cherry, 'Design studies of a high resolution PET detector using APD arrays', IEEE transactions of Nuclear Science, Vol. 47, pp. 1051-1057, 2000 https://doi.org/10.1109/23.856546
  15. J. Seidel, J. J. Vaquero, and M. V. Green, 'Resolution uniformity and sensitivity of the NIH ATLAS small animal PET scanner: comparison to simulated LSO scanner without depth-of-interaction capability', IEEE transactions of Nuclear Science, Vol. 50, pp. 1347-1350, 2003 https://doi.org/10.1109/TNS.2003.817282
  16. K. Wienhard, M. Schmand, M. E. Casey, K. Baker, J. Bao, L. Eriksson, W. F. Jones, C. Knoess, M. Lenox, M. Lercher, P. Luk, C. Michel, J. H. Reed, N. Richerzhagen, J. Treffert, S. Vollmar, J. W. Young, W. D. Heiss, and R. Nutt, 'The ECAT HRRT: Performance and first clinical application of the new high resolution research tomography', IEEE transactions of Nuclear Science, Vol. 49, pp. 104-110, 2002 https://doi.org/10.1109/TNS.2002.998689
  17. Y. H. Chung, Y. Choi, G. Cho, Y. S. Choe, K-H. Lee, B-T. Kim, 'Characterization of Dual Layer Phoswich Detector Performances for Small Animal PET using Monte Carlo Simulation', Physics in Medicine and Biology, Vol. 49, No. 13, pp. 2881-2890, 2004 https://doi.org/10.1088/0031-9155/49/13/008
  18. GEANT4 Collaboration, GEANT4: A simulation toolkit, SLAC Report SLAC-PUB-9350, 2002
  19. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J. M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, and C. Morel, 'GATE: a simulation toolkit for PET and SPECT', Physics in Medicine and Biology, Vol. 49, No. 19, pp. 4543-4561, 2004 https://doi.org/10.1088/0031-9155/49/19/007
  20. S. Staelens, D. Strul, G. Santin, S. Vandenberghe, M. Koole, Y. D'Asseler, I. Lemahieu, and R. V. Walle, 'Monte Carlo simulations of a scintillation camera using GATE: validation and application modeling', Physics in Medicine and Biology, Vol. 48, pp. 3021-3042, 2003 https://doi.org/10.1088/0031-9155/48/18/305
  21. G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. V. Martins, V. Breton, and C. Morel, 'GATE: A Geant4-based simulation platform for PET and SPECT integrating movement and time management', IEEE transactions of Nuclear Science, Vol. 50, pp. 1516-1521, 2003 https://doi.org/10.1109/TNS.2003.817974
  22. D. Lazaro, I. Buvat, G. Loudos, D. Strul, G. Santin, N. Giokaris, D. Donnarieix, L. Maigne, V. Spanoudaki, S. Styliaris, S. Staelens, and V. Breton, 'Validation of the GATE Monte Carlo simulation platform for modelling a CsI(Tl) scintillation camera dedicated to small-animal imaging', Physics in Medicine and Biology, Vol. 49, pp. 271-285, 2004 https://doi.org/10.1088/0031-9155/49/2/007
  23. J. H. Jung, Y. Choi, Y. H. Chung, T. Y. Song, M. H. Jeong, K. J. Hong, B. J. Min, Y. S. Choe, K-H. Lee, and B-T. Kim, 'A computer simulation for small animal Iodine-125 SPECT development', Korean Journal of Nuclear Medicine, Vol. 38, No.1, pp. 74-84, 2004