Expression of the Recombinant Porcine GH Gene In Vitro Using Tetracycline Inducible Expression System

In Vitro에서의 Tetracycline Inducible Expression System에 의한 재조합 돼지 성장호르몬 유전자의 발현

  • Kwon Mo Sun (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Koo Bon Chul (Department of Physiology, Catholic University of Daegu School of Medicine) ;
  • Kim Teoan (Department of Physiology, Catholic University of Daegu School of Medicine)
  • 권모선 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 구본철 (대구가톨릭대학교 의과대학 생리학교실) ;
  • 김태완 (대구가톨릭대학교 의과대학 생리학교실)
  • Published : 2005.03.01

Abstract

We cloned cDNA of the PGH(porcine growth hormone) gene and constructed retrovirus vector designed to express PGH gene under the regulation of CMV (cytomegalovirus) promoter. To maximize the expression, WPRE(woodchuck hepatitis virus posttranscriptional regulatory element) sequence was placed at the downstream of the PGH gene. After infection with recombinant viruses, approximately 1×10/sup 6/ PFF(porcine fetal fibroblast) cells released PGH protein into the media as much as 1,400 ng. In a subsequent experiment, a modifications of the retrovirus vector was made to express the PGH gene in a teracycline-inducible manner. In PFF cells carrying these viral vector sequences, addition of doxycycline to the media resulted in 2∼6 fold increase in PGH synthesis. In the modified retrovirus vectors, the WPRE sequence also played a role in boosting the effect of the tetracycline induction. This result indicates that our tetracycline-inducible expression system might be a promising candidate in alleviating the complicate physiological problems caused by constitutive expression of the exogenous genes in the transgenic animals.

본 연구에서는 돼지의 체지방을 감소시키고 성장을 촉진시키는 인자인 PGH를 cloning하여 이 유전자를 외래 유전자의 발현이 유도적으로 조절되는 Tet system에 도입하고자 하였다. 또한 유전자의 발현이 turn on되었을 때 그 발현 정도를 최대화하기 위하여 WPRE 서열을 도입하였다. 구축된 각각의 vector는 retrovirus 생산 세포주에 도입하여 virus를 생산하였으며 이를 여러 종류의 표적세포에 감염시켜서 PGH 유전자의 발현을 확인한 결과, 1×10/sup 6/ 세포에서 350∼2,100 ng의 PGH가 분비되었으며 특히 PFF 세포에서 가장 높은 발현을 나타내었다. Tet system에 도입된 PGH의 발현이 유도적으로 조절되는지를 PFF 세포에서 확인한 결과, 유도 효율이 2∼6배로 나타났으며 WPRE 서열이 rtTA 유전자의 downstream에 위치한 조건에서 가장 높은 유도 효율을 나타내었다. 이러한 PGH 유전자의 유도적인 발현의 조절은 고급육 생산의 형질전환 돼지 연구에 있어서 가장 큰 문제점이 되는 PGH 유전자의 과다한 발현에 의한 생리적인 부작용을 최소화할 수 있는 해결 방안으로 제시될 수 있을 것이다.

Keywords

References

  1. Bohl D, Naffakh N, Heard JM (1997): Long-term control of erythropoietin secretion by doxycycline in mice transplanted with engineered primary myoblasts. Nat Med 3:299-305 https://doi.org/10.1038/nm0397-299
  2. Campbell RG, Johnson RJ, Taverner MR, King RH (1991): Interrelationships between exogenous porcine somatotropin (pST) administration and dietary protein and energy intake on protein deposition capacity and energy metabolism of pigs. J Anim Sci 69: 1522-1531 https://doi.org/10.2527/1991.6941522x
  3. Donello JE, Loeb JE, Hope TJ (1998): Woodchuck hepatitis virus contains a tripartite posttranscriptional regulatory element. J Virol 72:5085-5092
  4. Ebert KM, Low MJ, Overstrom EW, Buonomo FC, Baile CA, Roberts TM, Lee A, Mandel G, Goodman RH (1988): A moloney ML V-rat somatotropin fusion gene produces biologically active somatotropin in a transgenic pig. Mol Endocrinol 2:277-283 https://doi.org/10.1210/mend-2-3-277
  5. Etherton TD, Bauman DE (1998): Biology of somatotropin in growth and lactation of domestic animals. Physiol Rev 8:745-61
  6. Etherton TD, Etherton K, Mills EW (1993): Recombinant bovine and porcine somatotropin: safety and benefits of these biotechnologies. J Am Diet Assoc 93:177-180 https://doi.org/10.1016/0002-8223(93)90835-9
  7. Evock CM, Etherton TD, Chung CS, Ivy RE (1988): Pituitary porcine growth hormone (pGH) and a recombinant pGH analog stimulate pig growth performance in a similar manner. J Anim Sci 66:1928-1941 https://doi.org/10.2527/jas1988.6681928x
  8. Furth PA, Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994): Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci USA 91:9302-9306
  9. Gossen M, Bujard H (1992): Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci USA 89:5547-5551
  10. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995): Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766-1769 https://doi.org/10.1126/science.7792603
  11. Hammer RE, Pursel VG, Rexroad CE Jr, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985): Production of transgenic rabbits, sheep and pig by microinjection. Nature 315:680-683 https://doi.org/10.1038/315680a0
  12. King RH, Campbell RG, Smits RJ, Morley WC, Ronnfeldt K, Butler K, Dunshea FR (2000): Interrelationships between dietary lysine, sex and porcine somatotropin administration on growth performance and protein deposition in pigs between 80 and 120 kg live weight. J Anim Sci 78:2639-2651
  13. Lin S, Galiano N, Culp, Burns JC, Friedmann T, Yee JK, Hopkins N (1994): Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. Science 265:666-668 https://doi.org/10.1126/science.8036514
  14. Mayford M, Bach ME, Huang YY, Wang L, Hawkins RD, Kandel ER (1996): Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678-1683 https://doi.org/10.1126/science.274.5293.1678
  15. Miller KF, Bolt DJ, Pursel VG, Hammer RE, Pinkert CA, Palmiter RD, Brinster RL (1989): Expression of human or bovine growth hormone gene with a mouse metallothionein-1 promoter in transgenic swine alters the secretion of porcine growth hormone and insulin-like growth factor- I. J Endocrinol 120: 481-488 https://doi.org/10.1677/joe.0.1200481
  16. Palmiter RD, Brinster RL, Hammer RE, Trumbauer ME, Rosenfeld MG, Birnberg NC, Evans RM (1982): Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300:611-615 https://doi.org/10.1038/300611a0
  17. Pursel VG, Rexroad CE Jr, Bolt DJ, Miller KF, Wall RJ, Hammer RE, Pinkert CA, Palmiter RD, Brinster RL (1987): Progress on gene transfer in farm animals. Vet Immunol Immunopathol 17:303-312 https://doi.org/10.1016/0165-2427(87)90149-8
  18. Schultze N, Burki Y, Lang Y, Certa U, Bluethmann H (1996): Efficient control of gene expression by single step integration of the tetracycline system in transgenic mice. Nat Biotechnol 14:499-503 https://doi.org/10.1038/nbt0496-499
  19. Smith VG, Kasson CW (1991): The interrelationship between crude protein and exogenous porcine somatotropin on growth, feed and carcass measurement of pig. J Anim Sci 69:571-577 https://doi.org/10.2527/1991.692571x
  20. Vize PD, Michalska AE, Ashman R, Lloyd B, Stone BA, Quinn P, Wells JRE, Seamark RF (1988): Introduction of a porcine growth hormone fusion gene into transgenic pigs promotes growth. J Cell Sci 90: 295-300
  21. Yarranton GT (1992): Inducible vectors for expression in mammalian cells. Curr Opin Biotechnol 3:506-511 https://doi.org/10.1016/0958-1669(92)90078-W
  22. Zufferey R, Donello JE, Trono D, Hope TJ (1999): Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886-2892