백령도와 보은 지역의 상부맨틀암석 내의 단사휘석의 지화학적 특징

Geochemical Characteristics of Clinopyroxenes in the Upper Mantle Rocks under the Baegryeong Island and the Boeun

  • 길영우 (한국기초과학지원연구원 나노환경연구부) ;
  • 이석훈 (한국기초과학지원연구원 나노환경연구부)
  • Kil Young Woo (Division of Nano Material and Environmental Science, Korea Basic Science Institute) ;
  • Lee Seok Hoon (Division of Nano Material and Environmental Science, Korea Basic Science Institute)
  • 발행 : 2005.03.01

초록

백령도와 보은 지역의 마이오세 알칼리현무암에 상부맨틀암석인 스피넬 페리도타이트가 포획되어 있다. 이들 포획체 내의 단사휘석의 모드 조성과 주성분원소, 미량원소, 희토류원소 조성은 백령도와 보은 지역의 상부맨틀의 평형 온도와 맨틀결핍, 맨틀부화와 같은 지화학적 과정들을 규명하는 매우 중요하다. 원생입상조직과 반상쇄설조직 사이의 전이 조직을 보이는 백령도와 보은 스피넬 페리도타이트의 평형온도는 15 kb 압력에서 각각 773∼1188℃와 705∼1106℃이다. 단사휘석의 Y, Yb 성분은 백령도와 보은 스피넬 페리도타이트가 각각 1~10%와 1∼4%의 부분용융을 받았고, 단사휘석의 LREE 부화 패턴은 이들 지역 상부맨틀이 은폐 맨틀교대작용을 받았음을 지시한다.

Modal and chemical compositions of clinopyroxnes in spinel peridotites from the Baegryeong Island and the Boeun, enclosed in Miocene alkali basalt, are important for understanding the pre-eruptive temperature condition and chemical processes such as mantle depletion and enrichment. All spinel peridotites show transitional texture between protogranular and porphyroclastic textures. Temperature ranges of spinel peridotites from the Baegryeong Island and the Boeun at 15 kb are 773∼1188℃ and 705∼1106℃, respectively. The spinel peridotites from the Baegryeong Island and the Boeun have undergone the 1∼10% and 1∼4% fractional melting, which were determined by using primitive mantle-normalized Y and Yb of clinopyroxenes. LREE enrichment patterns of clinopyroxene indicate that these rocks from both areas have undergone cryptic mantle metasomatism without new minerals.

키워드

참고문헌

  1. 김규한, Nagao Keisuke, 장영숙, Sumino Hirochika, 정정인 (2002) 백령도에 분포하는 알칼리 현무암과 맨틀 포획암의 Nd-Sr과 영족기체 동위원소. 자원환경지질, 35, 523-532
  2. 김윤규, 이대성, 송윤구, 김선억 (1988) 보은 지역 조곡리 현무암에 함유된 초염기성 포획암의 암석학. 지질학회지, 24, 57-66
  3. 양경희 (2004) 제주도의 하부지각/상부맨틀 기원의 포획암에 포획된 유체포유물: 예배연구. 암석학회지, 13, 34-45
  4. 윤성효, 고정선, 안지영 (1998) 제주도 동부 알칼리 현무암내 스피넬-레졸라이트 포획체의 연구. 자원환경지질, 31, 447-458
  5. 이문원 (1984) 제주화산암류에 포획된 mafic 포획암. 지질학회지, 20, 306-313
  6. 임순복, 최현일, 김복철, 김정찬 (1998) 분지별 퇴적시스템 연구(I) - 원생대 백령층군 및 태안층. 한국자원연구소 보고서, 116p
  7. Bailey, O.K. (1970) Volatile flux, heat focusing and the generation of magma. Geol. J. Spec. Issue No 2, 177-186
  8. Bertrand, P. and Mercier, J.C.C. (1985) The mutual solubility of coexisting ortho- and clinopyroxene: toward an absolute geothermometer for the natural system? Earth Planet. Sci. Lett., 76, 109-122 https://doi.org/10.1016/0012-821X(85)90152-9
  9. Bonatti, E., Ottonello, G., and Hamlyn, P.R. (1986) Peridotites from Island of Zabargad (St. John) Red Sea: Petrology and geochemistry. J. Geophys. Res., 91, 599-631 https://doi.org/10.1029/JB091iB01p00599
  10. Brey, G.P. and Kohler, T. (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol., 31, 1353-1378 https://doi.org/10.1093/petrology/31.6.1353
  11. Choi, S-H. (2000) Oxidation state of mantle xenoliths from Jeju-do, South Korea. Geosci. J., 4, 211-220 https://doi.org/10.1007/BF02910139
  12. Choi, S-H., Iwa, Y-J., and Lee, H-Y. (2001) Geothermal gradient of the upper mantle beneath Jeju Island, Korea: Evidence from mantle xenoliths. Island Are, 10, 175-19
  13. Choi, S-H., Lee, J-J., Park C-H., and Moutte, J. (2002) Geochemistry of peridotite xenoliths in alkali basalts from Jeju Island, Korea. Island Are, 11, 221-235 https://doi.org/10.1046/j.1440-1738.2002.00367.x
  14. Dawson, J. B. (1984) Contrasting types of upper mantle metasomatism? In: Kornprobst, J. (eds.), Kimberlites II, pp. Elsevier, Amsterdam, 289-29
  15. Droop, G.T.R. (1987) A general equation for estimating $Fe^{3+}$ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral. Mag., 51, 431-435 https://doi.org/10.1180/minmag.1987.051.361.10
  16. Harte, B. (1977) Rock nomenclature with particular relation to deformation and recrystallization textures in olivine-bearing xenolith. J. Geo., 85, 279-288 https://doi.org/10.1086/628299
  17. Hofmann, A. W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett., 90, 297-314 https://doi.org/10.1016/0012-821X(88)90132-X
  18. Kil, Y. and Wendlandt, R.F. (2004) Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contrib. Minieral. Petrol., 148, 265-280 https://doi.org/10.1007/s00410-004-0608-9
  19. Kohler, T.P. and Brey, G.P. (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarorneter for natural peridotites from 2 to 60 kb with applications. Geochem. Cosmochim. Acta, 54, 2375-2388 https://doi.org/10.1016/0016-7037(90)90226-B
  20. Kim, K.H., Nagao, K., Tanaka, T., Sumino, H., Nakamura, T., Okuno, M., Ishitsuka, Y., Jin, B.L., and Song, J.H. (2004) He-Ar and Nd-Sr isotopic compositions of ultramafic xenoliths and host alkali basalts from the Korean peninsula. Abstract of annual meeting of the Korea Society of Economic and Enviromental Geology, 125
  21. Lee, H.Y. (2002) Petrology of Spinel lherzolite from South Korea: Implication of PIT Estimate. J. Kor. Earth Sci. Soc., 23, 38-51
  22. Maaloe, S. and Aoki, K. (1977) The major element composition of upper mantle estimated from the composition of Iherzolites. Contrib. Mineral. Petrol., 63, 161-173 https://doi.org/10.1007/BF00398777
  23. Menzies, M.A. and Hawkesworth, C.J. (1987) Mantle metasomatism. Academic Press, London, 472p
  24. Mercier, J.C. and Nicolas, A. (1975) Texture and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J. Petrol., 16, 454-487
  25. Nagasawa, H., Schreiber, H.D., and Morris, R.Y. (1980) Experimental mineral/liquid partition coefficients of the rare earth elements (REE), Sc and Sr for perovskite, spinel and melilite. Earth Planet. Sci. Lett., 46, 431-437 https://doi.org/10.1016/0012-821X(80)90056-4
  26. Nixon, P.H. (1987) Mantle xenoliths. Wiley and Sons, New York, 844p
  27. Norman, M.D. (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICP-MS analysis of minerals in spinel Iherzolites from eastern Australia. Contrib. Mineral. Petrol., 130, 240-255 https://doi.org/10.1007/s004100050363
  28. O'Reilly, S.Y., Chen, D., Griffin, W.L., and Ryan, C.G. (1997) Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral. Mag., 61, 257-269 https://doi.org/10.1180/minmag.1997.061.405.09
  29. Stosch, H.G. (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochem. Cosmochim. Acta, 46, 793-811 https://doi.org/10.1016/0016-7037(82)90031-X
  30. Streckeisen, A. (1974) To each plutonic rock its proper name. Earth Sci. Rev., 12, 1-33
  31. Wilson, M. (1989) Igneous petrogenesis. Unwin Hyman, 466p
  32. Witt-Eickschen, G. and Seck, H.A. (1987) Temperature of sheared mantle xenoliths from the West Eifel, West Germany: evidence for mantle diapirism beneath the Rhenish massif. J. Petrol., 28, 475-493 https://doi.org/10.1093/petrology/28.3.475
  33. Wood, B. J. and Banno, S. (1973) Garnet- orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems. Contrib. Mineral. Petrol., 42, 109-124 https://doi.org/10.1007/BF00371501
  34. Zipfel, J. and Womer, G. (1992) Four- and fivephase peridotites from a continental rift system: evidence for upper mantle uplift and cooling at the Ross Sea margin (Antarctica). Contrib. Mineral. Petrol., 111, 24-36 https://doi.org/10.1007/BF00296575