Ecotoxicological Biomonitoring at Different Levels of Biological Organization and Its Application in Chironomus spp.

다단계 생체지표를 이용한 생태독성 모니터링과 Chironomus spp.에의 적용

  • Choi Jinhee (Faculty of Environmental Engineering, University of Seoul)
  • 최진희 (서울시립대학교 환경공학부)
  • Published : 2005.03.01

Abstract

환경오염의 조기 경보 시스템으로 생체지표를 이용한 생태독성 모니터링이 최근 널리 연구되고 있다. 환경내의 생물종에서 측정한 생체지표를 이용한 환경 모니터링은 생태계 수준의 영향에 대한 예측 정보를 제공해 줄 수도 있다. 이를 위해서는 생체지표와 개체군 수준에서의 반응과의 인과관계가 밝혀져야 한다. 오염물질에 대한 생체의 반응은 분자, 세포, 생화학, 생리적, 개체, 개체군, 군집 수준에서 나타나게 되며, 이러한 각 단계별 반응은 반응 시간의 규모와 독성학적, 생태적 관련성에 따라 구분 지어 볼 수 있다. 각 개별 수준에서의 반응을 종합하면 오염물질에 노출된 생체의 전제적인 영향을 이해할 수 있으며, 이러한 이해를 바탕으로 개체군에서 나타나는 영향에 대한 인과관계를 추론할 수 있다. 생체지표와 개체군 수준의 반응과의 인과관계 정립은 효율적인 환경오염 예방기능 수행에 필수적인 과정이며, 다단계 생체 지표는 각 단계별 반응의 인과관계를 밝히기 위해 가장 적절한 접근 방법이다. 수서 무척추 생물인 Chironomus의 유충은 이러한 다단계 바이오마커 연구에 매우 적절한 생물학적 모델이다. 이 논문의 첫 번째 부분은 생체지표를 이용한 환경 모니터링을, 두 번째 부분은 Chironomus의 유충에서 생체지표의 적용에 대해서 다룬다.

Keywords

References

  1. Abele-Oeschger DA. Comparative study of superoxide dismutase activity in marine benthic invertebrates with respect to environmental sulphide exposure, J Exp Mar Bio Ecol 1996; 197: 39-49 https://doi.org/10.1016/0022-0981(95)00143-3
  2. Adams SM. Status and use of biological indicators for evaluating the effect of stress in fish. In: Biological Indicators of Stress in fish, Am Fish Soc Bethesda, MD 1990; 1-8
  3. Atienza FA, Conradi M, Evenden AJ, Jha A and Depledge MH. Qualitative assessment of genotoxicity using random amplified polymorphic DNA: Comparison of genomic template stability with key fitness parameters in Daphnia Magna exposed to benzo[a]pyrene, Environ Toxicol Chem 1999; 18: 2275-2282 https://doi.org/10.1897/1551-5028(1999)018<2275:QAOGUR>2.3.CO;2
  4. Aziz JB, Akrawi NM and Nassori GA. The effect of chronic toxicity of copper on the activity of Balbiani ring and nucleolar organizing region in the salivary gland chromosomes of Chironomus ninevah larvae, Environ Pollut 1991;69: 125-130 https://doi.org/10.1016/0269-7491(91)90138-M
  5. Barnes RD. Invertebrate Zoology. Sanders, Philadelphia. 1968
  6. Baturo W and Lagadic L. Benzo[a]pyrene hyroxyrase and glutathion S-transferase activities as biomarkers in Lymnaea Palustris (Molusca, Gastropoda) exposed to atrazine and hexachlorobenzene in freshwater mesocosms, Environ Toxicol Chem 1996; 15: 771 -781 https://doi.org/10.1897/1551-5028(1996)015<0771:BAPHAG>2.3.CO;2
  7. Bentivegna CS and Cooper KR. Reduced chromosomal puffing in chironomus thummias a biomarker for potentially genetoxic substances, Environ Toxicol Chem 1993; 12: 1001-1011 https://doi.org/10.1897/1552-8618(1993)12[1001:RCPICT]2.0.CO;2
  8. Caquet Th and Lagadic L. Consequences of individual-level alterations on population dynamics and community structure and function, In Use of Biomarkers in Monitoring Environmental Health. (eds L. Lagadic, Th. Caquet JC, Amiard F, Ramade) Balkema, Rotterdam, Rotterdam, The Netherlands and Science. 2000
  9. Choi J, Caquet Th and Roche H. Multi-level effects of sublethal fenitrothion exposure in Chironomus riparius mg. (Diptera, Chironomidae) larvae, Environ Toxicol Chem 2002; 21: 2725-2730 https://doi.org/10.1897/1551-5028(2002)021<2725:MEOSFE>2.0.CO;2
  10. Choi J, Roche Hand Caquet Th. Hypoxia, hyperoxia and exposure to potassium dichromate or fenitrothion alter the energy metabolism in Chironomus riparius mg. (Diptera : Chironomidae) larvae, Comp Biochem Physiol C 2001; 130: 11-17 https://doi.org/10.1016/S1532-0456(01)00206-X
  11. Choi J, Roche H and Caquet Th. Effects of physical (hypoxia, hyperoxia) and chemical (potassium dichromate, fenitrothion) stress on antioxidant enzyme activities in Chironomus riparius mg. (Diptera, Chironomidae) larvae: potential biomarkers, Environ Toxicol Chem 2000; 19: 495-500 https://doi.org/10.1897/1551-5028(2000)019<0495:EOPHHA>2.3.CO;2
  12. Cormier SM and Daniel FB. Biomarkers: taking the science forward, Environ Toxicol Chem 1994; 13: 1011-1021 https://doi.org/10.1897/1552-8618(1994)13[1011:BTTSF]2.0.CO;2
  13. Crane M, Sildanchandra W, Kheir R and Callaghan A. Relationship between biomarker activity and developmental endpoints in Chironomus riparius Meigen exposed to an organophosphate insecticide, Ecotoxicol Environ Saf 2002; 5: 361- 369 https://doi.org/10.1016/S0147-6513(02)00038-6
  14. Cranston PS. The Chironomidae-The Biology and Ecology of Non - bitting Midges. Chapman & hall, Londres, 1995; 1-7
  15. Depledge MH. The ecotoxicological significance of genotoxicity in marine invertebrates, Mutat Res 1998; 399: 109-122 https://doi.org/10.1016/S0027-5107(97)00270-4
  16. Depledge MH and Fossi MC. The role of biomarkers in environmental assessment (2). Invertebrates, Ecotoxicology 1994; 3: 161-172 https://doi.org/10.1007/BF00117081
  17. Depledge MH. The rational basis for the use of biomarkers as ecotoxicological tools, In Nondestructive biomarkers in vertebrates. Lewis Publishers (eds Fossi Me. and Leonzio C), Boca Raton 1994; 261-285
  18. Depledge MH, Amaral-Mendes JJ, Daniel B, Halbroo RS, Kloepper-Sams P, Moore MN and Peakall DB. The conceptual basis of the biomarker approach Biomarkers, Research and Application in the Assessment of Environmental Health (eds Peakall DB and Shugart LR), NATO Advanced Science Institutes Series. Springer Verlag, Berlin 1993; 68: 15-29
  19. Derr SK and Zabik MJ. Biologically active compounds in aquatic environment: the effect of DDE on the egg viability of Chironomus tentans, Bull Environ Contam Toxicol 1972; 7: 366-368 https://doi.org/10.1007/BF01684461
  20. Detra RL and Collins WJ. The relationships of parathion concentration, exposure time, cholinesterase inhibition and symptoms of toxicity in midge larvae (Chironomus : Diptera), Environ Toxicol Chem 1991; 10: 1089-1095 https://doi.org/10.1897/1552-8618(1991)10[1089:TROPCE]2.0.CO;2
  21. Dickerson RL, Hooper MJ, Gard NW, Cobb GP and Kendall RJ, Toxicological foundations of ecological risk assessment: biomarker development and interpretation based on laboratory and wildlife species. Environ Health Perspect 1994; 102 (suppl.): 65-69 https://doi.org/10.1289/ehp.94102s765
  22. Engel DW and Vaughan DS, Biomarkers, natural variability and risk assessment: Can they co-exist? Human and Ecological Risk Assessment 1996; 2: 257-262 https://doi.org/10.1080/10807039609383605
  23. Estenik JF and Collins WJ. In vivo and in vitro studies of mixed-function oxidase in an aquatic insect, Chironomus riparius. Am Chem Soc 979; 99: 349- 370 https://doi.org/10.1021/ja00444a006
  24. Fisher T, Crane M and Callaghan A. Induction of cytochrome P-450 activity in individual Chironomus riparius Meigen Larvae exposed to xenobiotics, Ecotoxicol Environ Saf 2003; 54: 1-6 https://doi.org/10.1016/S0147-6513(02)00031-3
  25. Forbes VE and Forbes TL. Ecotoxicology in Theory and Practice, Chapman and Hall, London 1994
  26. Fossi MC, Casini S, Savelli C, Corbelli C, Franchi E, Mattei N, Sanchez- Hernadez JC, Corsi I, Bamber S and Depledge MH. Biomarker responses at different levels of biological organization in crabs (Carcinus aestuarii) experimentally exposed to benzo(a)pyrene, Chemosphere 2000; 40: 861-874 https://doi.org/10.1016/S0045-6535(99)00300-8
  27. Guecheva TN, Erddtmann B, Benfato MS and Henriques JAP. Stress protein and catalase activity in freshwater planarian Dugesia (Girardia) schubarti exposed to cooper. Ecotoxicol Environ Saf 2003; in press https://doi.org/10.1016/S0147-6513(02)00065-9
  28. Guecheva TN, Henriques JAP and Erddtmann B. Genotoxic effects of cooper sulphate in freshwater planarian in vivo, studied with the single-cell gel test (Comet assay), Mutat Res 2001; 497: 19-27 https://doi.org/10.1016/S1383-5718(01)00244-3
  29. Hudson LA and Ciborowski JH. Teratogenic and genotoxic response of larval Chironomus salinarius group (Diptera: Chironomidae) to contaminated sediment, Environ ChemToxicol 1996; 15: 1375-1381 https://doi.org/10.1897/1551-5028(1996)015<1375:TAGROL>2.3.CO;2
  30. Hwang H, Fisher SW and Landrum PF. Identifying body residue of HCBP associated with 10-d mortality and partial life cycle effects in the midge, Chironomus riparius, Aquat Toxicol 2001; 52: 251-267 https://doi.org/10.1016/S0166-445X(00)00142-9
  31. Hyne RV and Maher WA. Invertebrate biomarker: links to toxicosis that predict population decline, Ecotoxicol Environ Saf 2003; 54: 366-374 https://doi.org/10.1016/S0147-6513(02)00119-7
  32. Ingersoll C and Nelson MK. 'Testing sediment toxicity with Hyalella azteca (amphipod) and Chironomus riparius (Diptera)', Aquatic Toxicology and Risk Assessment (eds.Landis W, Van der Schalie W), American Society of Testing and Materials, Philadelphia, 1990; 93 - 110
  33. James MO. Biotransformation and disposition of PAHs in aquatic invertebrates. In Metaboilsm of Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. CRC Press, Boca Raton, FL. 1989
  34. Karnak RE and Collins WJ. The susceptibility to selected insecticides and acetylcholinesterase activity in a laboratory colony of midge larvae, Chironomus tentans (Diptera: Chironomidae), Bull Environ contam Toxicol 1974; 12: 62-69 https://doi.org/10.1007/BF01713027
  35. Karouna-Renier NK and Zehr JP. Ecological implications of molecular biomarkers : assaying sub-lethal stress in the midge Chironomus tentans using heat shock protein 70 (HSP-70) expression. Hydrobiologia 1999; 401: 255-264 https://doi.org/10.1023/A:1003730225536
  36. Kendall RJ, Anderson TA, Baker RJ, Bens CM, Carr JA, Chiodo LA, Cobb GP, Dickerson RL, Dixon KR, Frame LT, Hooper MJ, Martin CF, McMurry ST, Patino R, Smith EE and Theodorakis CW. Ecotoxicology In Casarett & Doull's Toxicology: The basic Science of Poison, 2001; 1013 -1045. 6th ed. McGRAW-Hill, New York
  37. Kosalwat, P. and Knight, A. W. Chronic toxicity of copper to a partial life cycle of the midge, Chironomus decorus, Arch Environ Contam Toxicol 1987; 16: 283-290 https://doi.org/10.1007/BF01054945
  38. Lagadic L, Caquet Th and Ramade F. The role of biomarkers in environmental assessment (5). Invertebrate populations and communities, Ecotoxicology 1994; 3: 193-208 https://doi.org/10.1007/BF00117084
  39. Lagadic L, Caquet Th, Amiard JC and Ramade F. Use of Biomarkers in Monitoring Environmental Health (eds L. Lagadic, Th. Caquet JC. Amiard J and Ramade F), Balkema, Rotterdam, The Nethrelands & Science Publishers, Inc., Enfield. 2000
  40. Landrum PF and Robbins JA. Bioavailability of sediment-associated contaminants to benthic invertebrate. In Sediments : chemistry and toxicity of in-place pollutants (eds R. Baudo, J. P. Giesy & H. Muntau), 1990; 237-263
  41. Lindegaard C. 'Classification of water-bodies and pollution.' The Chironomidae. The biology and ecology of non-biting midges, (eds. Armitage P, Cranston PS. and Pinder LCV), Chapman & Hall, New York, 1995; 385-404
  42. Livingstone DR. Organic xenobiotic metabolism in marine invertebrates, Advanced Comp Environ Physiol 1991; 7: 45-185
  43. Mattingly KS, Beaty BJ, Mackie RS, McGaw M, Carson JO and Rayms-Keller A. Molecular cloning and characterization of a metal responsive Chironomus tentans alpha-tublin cDNA, Aquat Toxicol 2001; 54: 249-260 https://doi.org/10.1016/S0166-445X(00)00181-8
  44. Mayer FL, Versteeg DJ, McKee MJ, Folmar LC, Graney RL, McCune DC and Rattner BA. Physiological and nonspecific biomarkers. In: Biomarkers: Biochemical, Physiological and Histological Markers of Anthropogenic Stress. (eds RJ. Huggette RA, Kimerle PM Mehrle Jr. and Bergman HL) Lewis, Boca Raton, FL 1992; 5-85
  45. McCarty LS and Munkittrick KR. Environmental biomarkers in environmetal aquatic toxicology: friction, fantasy, or functional? Human and Ecological Risk Assessment, 1996; 2: 268-274 https://doi.org/10.1080/10807039609383607
  46. Meregalli G, Bettinetti R, Pluymers L, Vermeulen AC, Rossaro B and Ollevier F. Mouthpart Deformities and Nucleolus Activity in Field-Collected Chironomus riparius Larvae, Arch Environ Contam Toxicol 2002; 42: 405-409 https://doi.org/10.1007/s00244-001-0040-3
  47. Michailova P, Ilkova J and White KN. Functional and structural rearrangements of salivary gland polytene chromosomes of Chironomus riparius Mg. (Diptera, Chironomidae) in response to freshly neutralized aluminium. Environ Pollut 2003; 123: 193-207 https://doi.org/10.1016/S0269-7491(02)00405-0
  48. Michailova, P, Petrova N, Sella G, Ramella L and Bovero S. Structural-functional rearrangements in chromosome G in Chironomus riparius (Diptera, Chironomidae) collected from a heavy metal-polluted ares near Turin, Italy Environ Pollut 1998; 103: 127-134 https://doi.org/10.1016/S0269-7491(98)00085-2
  49. NAS/NRC (National Academy of Science/ National Research Council) Biologic markers in reproductive toxicology. National Academy of Press, Washington DC. 1989
  50. Newman MC and Unger MA. Fundamentals of Ecotoxicology. 2nd. CRC Press LLC, Boca Raton. 2003
  51. Newman MC and Jagoe CH. Ecotoxicology: A Hierachical Treatment. CRC Press, New York. 1996
  52. NRC (National Research Council) Committee on Biological Makers Environ Health Perspect 1987; 74: 3-9 https://doi.org/10.2307/3430428
  53. Olsen T, Ellerbeck L, Fisher T, Callaghan A and Crane M. Variability in acetylcholinesterase and glutathion Stransferase activities in Chironomus riparius Meigen deployed in situ at uncontaminated field sitesm, Environ Toxicol Chem 2001; 24: 1725-1732 https://doi.org/10.1897/1551-5028(2001)020<1725:VIAAGS>2.0.CO;2
  54. Osmulski PA and Leyko W. Structure, function and physiological role of Chironomus haemoglobin, Comp Biochem Physiol 1986; 85: 701-722 https://doi.org/10.1016/0305-0491(86)90166-5
  55. Palawski DU, Hunn JB, Cheter DN and Wiedmeyer RH. Interactive effects of acidity and aluminium exposure on the life cycle of the midge Chironomus riparius (Diptera), J Freshwater Ecol 1989; 5: 155-162 https://doi.org/10.1080/02705060.1989.9665830
  56. Pascoe D, Williams KA and Green DWJ. Chronic toxicity of cadmium to Chironomus riparius Meigen-effects upon larval development and adult emergence, Hydrobiologia 1989; 175: 109-115 https://doi.org/10.1007/BF00765121
  57. Peakall DB. The role of biomarkers in environmental assessment(1) Introduction. Ecotoxicology 1994; 3: 157-160 https://doi.org/10.1007/BF00117080
  58. Peakall DB and Shugart LR. Biomarkers: Research and Application in the Assessment of Environmetal Health. Springer-Verlag, Berlin. 1993
  59. Pinder LCV. Biology of freshwater Chironomidae. Annu Rev Entomol 1986;31: 1-23 https://doi.org/10.1146/annurev.en.31.010186.000245
  60. Risso-de Faverney C, Devaux A, Lafaurie M, Girard JP and Rahmani R. Toxic Effect of Wastewaters Collected at Upstream and Downstream Sites of a Purification Station in Culutures of Rainbow Trout Hepatocytes, Arch Environ Contam Toxicol 2001; 41: 129-141 https://doi.org/10.1007/s002440010230
  61. Segner H, Caroll K, Fenske M, Janssen CR, Maack G, Pascoe D, Schafers C, Vandenbergh GF, Watt M and Wenzel A. Identification of endocrine-disrupting effects in aquatic vertegrates and invertebrates: report from the European IDEA project. Ecotoxicol Environ Saf 2003; 54: 302-314 https://doi.org/10.1016/S0147-6513(02)00039-8
  62. Synder MJ and Mulder EP. Environmental endocrine disruption in decapod crustacean larvae: hormone titers, cytochrome P450, and stress protein responses to heptachlor exposure, Aquat Toxicol 2001; 55: 177-190 https://doi.org/10.1016/S0166-445X(01)00173-4
  63. Taylor EJ, Blockwell SJ, Maund SJ and Pasco D. Effects of lindane on the life-cycle of a freshwater macroinvertebrate Chironomus riparius Meigen (Insecta: Diptera), Arch Environ contam Toxicol 1993; 24: 145-150 https://doi.org/10.1007/BF01141340
  64. Vermeulen AC. Elaborating chironomid deformities as bioindicators of toxic sediment stress: the potential application of mixture toxicity concepts, Ann Zool Fenn 1995; 32: 265-285
  65. Watts MM, Pascoe D and Carroll K. Chronic exposure to $17{\alpha}$-ethinylestradiol and bisphenol A-effects on development and reproduction in the freshwater invertebrate Chironomus riparius (Diptera: Chironomidae), Aquat Toxicol 2001; 55: 113-124 https://doi.org/10.1016/S0166-445X(01)00148-5
  66. Weber RE and Vinogradov SN. Non-vertebrate hemoglobins: Function and molecular adaptation, Physiol Rev 2001; 81: 569-628 https://doi.org/10.1152/physrev.2001.81.2.569
  67. Weber RE. Functions of invertebrate Hemoglobins with special reference to adaptations to environmental hypoxia, Am Zool 1980; 20: 79-101 https://doi.org/10.1093/icb/20.1.79
  68. Wheelock CE, Baumgartner TA, Newman JW, Wolfe MF and Tjeerdema RS. Effect of nutritional state on Hsp60 levels in the rotifer Brachionus plicatillis following toxicants exposure, Aquat Toxicol 2002; 61: 89-93 https://doi.org/10.1016/S0166-445X(02)00044-9
  69. Williams KA, Green DWJ, Pasco D and Gower DE. Effect of cadmium on oviposition and egg viability in Chironomus riparius (Diptera: Chironomidae), Bull Environ Contam Toxicol 1987; 38: 86-90 https://doi.org/10.1007/BF01606563
  70. Wilson JT, Pascoe PL, Parry JM and Dixon DR. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of marine invertebrate, Mytilus edulisL. (Mollusca: Pelecypoda), Mutat Res 1998; 399: 87-95 https://doi.org/10.1016/S0027-5107(97)00268-6