열분해 압력이 석탄 촤의 연소반응성에 미치는 영향

The Effect of Pyrolysis Pressure on Combustion Reactivity of Coal Char

  • 박호영 (한전 전력연구원 연소열공학그룹) ;
  • 김영주 (한전 전력연구원 연소열공학그룹) ;
  • 김태형 (한전 전력연구원 연소열공학그룹) ;
  • 서상일 (한전 전력연구원 연소열공학그룹)
  • Park Ho Young (Combustion & Thermal Engineering Group, Korea Electric Power Research institute, KEPCO) ;
  • Kim Young Ju (Combustion & Thermal Engineering Group, Korea Electric Power Research institute, KEPCO) ;
  • Kim Tae Hyung (Combustion & Thermal Engineering Group, Korea Electric Power Research institute, KEPCO) ;
  • Seo Sang Il (Combustion & Thermal Engineering Group, Korea Electric Power Research institute, KEPCO)
  • 발행 : 2005.02.01

초록

석탄의 열분해 압력이 촤의 연소 반응성에 미치는 영향을 가압열중량 분석기를 사용하여 고찰하였다. 사용되어진 탄은 알라스카, 아다로, 데니소브스키탄으로서 압력을 상압, 8기압, 15기압으로 변화시키면서 휘발분 방출량을 측정하고 열분해 압렵별로 생성된 촤의 반응성을 상압하 500℃에서 평가하였으며 생성된 촤의 결정구조, 표면적 및 기공특성, 화학적 특성을 분석하였다. 열분해 압력이 증가함에 따라 휘발분 방출량은 감소하였고 고압에서 생성된 촤의 반응성이 작았음을 알 수 있었다. 이는 반응표면적과 기공특성의 차이로 생각되어지며 열분해 압력에 따른 촤의 화학적 특성과 결정구조는 큰 차이를 보이지 않았다. 상압, 5기압 15기압하에서 3개 촤의 연소 반응속도를 측정하였으며 알라스카 촤의 경우, 15기압에서 연소반응성 지수 획득실험을 수행하여 56.8KJ/mole의 활성화에너지, 222.34(1/min)의 빈도계수 값을 얻었다.

The combustion reactivity of char depending on the pyrolysis pressure was investigated with Pressurized Thermogravimetric Analyser. The amounts of volatiles released at pyrolysis pressure of 1, 8 and 15 atm were, first, measured with Alaska, Adaro and Denisovsky coals. Reactivities of chars produced at var-ious pyrolysis pressure were evaluated at atmospheric pressure and 500℃, and analysed in terms of char crystal structure, surface area, pore characteristics and chemical composition of char. Finally, the combustion reactivities of three chars were examined at pressure of 1 atm, 8 atm and 15 atm. From this study, it was recognized that the amount of volatiles released decreases with increase in pyrolysis pressure, and reaction rate of char produced at higher pyrolysis pressure was lower than that at lower pyrolysis pressure. It might be resulted from the difference in char surface area and pore characteristics rather than char crystal structure and chemical characteristics. At 15 atm, kinetic parameters of Alaska char were obtained with the grain model, and these were 56.8 KJ/mole for activation energy and 222.34 (1/min) for frequency factor.

키워드

참고문헌

  1. Holt, N. EPRI Report 1001057
  2. Seebauer, V.; Petek, J.; Staudinger, G. Fuel, 1997, 76, 1277 https://doi.org/10.1016/S0016-2361(97)00106-3
  3. Sun, C.L.; Xiong, Y.Q.; Liu, Q.X; Zhang, M.Y. Fuel, 1997, 76, 639 https://doi.org/10.1016/S0016-2361(97)00043-4
  4. Lee, C.W.; Jenkins, R.G.; Schobert, H.H. Energy and Fuels, 1991, 5, 548
  5. Cai, H.Y.; Guell, A.J.; Chatzakis, I.N.; Lim, J.Y.; Dugwell, D.R.; Kandiyoti, R. Fuel, 1996, 75, 15 https://doi.org/10.1016/0016-2361(94)00192-8
  6. Suuberg, E.M.; Peters, W.A.; Howard, J.B. 17th symposium (int.) on combustion, p117, the combustion Institute, 1979
  7. Arendt, P.; Van Heek, K.H. Fuel, 1981, 60, 231 https://doi.org/10.1016/0016-2361(81)90185-X
  8. Solomon, P.R.; Serio, M.A.; Suuberg, E.M. Progress in Energy and Combustion Science, 1992, 18, 133
  9. Hurt, R.H.; Sarofim, A.F.; Longwell, J.P. Fuel, 1991, 70, 1079 https://doi.org/10.1016/0016-2361(91)90263-A
  10. Kajitani, S.; Matsuda, H. 8th Australian Coal Science Conference, 1998, 195
  11. Adschiri, T.; Nozaki, T.; Furusawa, T.; Zi-bin, Z. AIChE, 1991, 37, 897 https://doi.org/10.1002/aic.690370612
  12. Radovic, L.R.; Walker, P.L.; Jenkin, R.G. Fuel, 1983, 62, 849 https://doi.org/10.1016/0016-2361(83)90041-8
  13. Khan, M.R. Fuel, 1987, 66, 1626 https://doi.org/10.1016/0016-2361(87)90353-X
  14. Alvarez, E.; Gonzalez, J.F. Fuel, 1999, 78, 335 https://doi.org/10.1016/S0016-2361(98)00160-4
  15. Molina, A.; Mondragon, F. Fuel, 1998,77, 1831 https://doi.org/10.1016/S0016-2361(98)00123-9
  16. Miura, K.; Hashimoto, K.; Siveston, P. Fuel, 1989, 68, 1461 https://doi.org/10.1016/0016-2361(89)90046-X
  17. Lee, C.W.; Jenkins, R.G.; Schobert, H.H. Energy and Fuels, 1992, 6, 40 https://doi.org/10.1021/ef00031a007