DOI QR코드

DOI QR Code

A Bayesian Threshold Model for Ordered Categorical Traits

순서범주형자료 분석을 위한 베이지안 분계점 모형

  • Choi Byangsu (School of Computer Engineering, Hansung University) ;
  • Lee Seung-Chun (Department of Statistics, Hanshin University)
  • 최병수 (한성대학교 컴퓨터공학부) ;
  • 이승천 (한신대학교 정보통계학과)
  • Published : 2005.03.01

Abstract

A Bayesian threshold model is considered to analyze binary or ordered categorical traits. Gibbs sampler for making full Bayesian inferences about the category probability as well as the regression coefficients is described. The model can be regarded as an alternative to the ordered logit regression model. Numerical examples are shown to demonstrate the efficiency of the model.

순서를 갖는 범주형자료의 분석을 위한 중요한 통계적 방법인 순위로짓모형의 대안으로 무정보 사전분포에 의한 베이지안 분계점 모형을 정의하고, 실증 자료분석을 통해 베이지안 모형의 유용성을 살펴보았다.

Keywords

References

  1. Albert, J. H., and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data, Journal of the American Statistical Association, 88, 669-679 https://doi.org/10.2307/2290350
  2. Bliss, C. I. (1935). The calculation of the dosage-mortality curve, Annals of Application Biology, 22, 134-167 https://doi.org/10.1111/j.1744-7348.1935.tb07713.x
  3. Foulley, J. L., Im, S. Gianola, D., and Hoschele, I. (1987). Empirical Bayes estimation of parameters for n polygenic binary traits, Genetics Selection Evolution, 23, 309-338 https://doi.org/10.1186/1297-9686-23-4-309
  4. Gianola, D. (1982). Theory and analysis of threshold characters, Journal of Animal Scicence, 54, 1079-1096 https://doi.org/10.2527/jas1982.5451079x
  5. Griffiths, W. E., Hill, R. C., and Pope, P. J. (1987). Small sample properties of probit model estimators, Journal of the American Statistical Association, 82, 929-937 https://doi.org/10.2307/2288807
  6. Morz, T. A. (1987). The sensitivity of an empirical model of married women's hours of work to economic and statistical assumptions, Econometrica, 55 765-799 https://doi.org/10.2307/1911029
  7. Lee, S.-C., and Huh, M. (2003). A measure of association for complex data, Computational Statistics & Data Analysis, 44. 211-222 https://doi.org/10.1016/S0167-9473(03)00031-8
  8. Lee, S.-C., and Lee, D. (2002). Bayesian analysis of multivariate threshold animal models using Gibbs sampling, Journal of the Korean Statistical Society, 31. 177-198
  9. Soresen, D. A., Anderson, S., Gianola, D., and Korsgaard, I. (1995). Bayesian inference in threshold models using Gibbs sampling, Genetics Selection Evolution, 27, 229-249 https://doi.org/10.1186/1297-9686-27-3-229
  10. Wang, C. S., Rutledhe, J. J., and Gianola, D. (1994). Bayesian analysis of mixed linear models via Gibbs sampling with an application to litter size in Iberian pigs, Genetics Selection Evolution, 26, 91-115 https://doi.org/10.1186/1297-9686-26-2-91
  11. Wright, S. (1934). An analysis of variability in number of digits in an inbred strain of guinea pigs, Genetics, 19, 506-536