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BINARY RANDOM POWZR APPROACH TO MODELING
ASYMMETRIC CONDIT.ONAL HETEROSCEDASTICITY

S. Kimm!, S.Y. HwANG 2

ABSTRACT

A class of asymmetric ARCH processes is proposed via binary random
power transformations. This class accommodates traditional nonlinear mod-
els such as threshold ARCH (Rabemanjara and Zacoian (1993)) and Box-Cox
type ARCH models(Higgins and Bera (1992)). Stationarity condition of the
model is addressed. Iterative least squares(ILS) and pseudo maximum like-
lihood(PML) methods are discussed for estimating parameters and related
algorithms are presented. Illustrative analysis for Korea Stock Prices Index
(KOSPI) data is conducted.
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1. INTRODUCTION

It has been an usual practice in conditional heteroscedastic autoregressive
context that the conditional variance(h;, hereafter) exhibits typical symmetry as
a linear combination of the squared residuals(cf. Engle (1982)). Recently there
has been strong evidence particularly in financial time series that the conditional
variance may be non-symmetric. See for instance Li and Li (1996) and references
therein. In econometric time series, Rabemanjara and Zacoian (1993) proposed
threshold-asymmetric ARCH for {Z;}, so called TARCH model, given by

Zt=\/h_t'eta

Vh=ap+ OtuZttl + o122, 4, (1.1)
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where and throughout the paper the notation

a} = maz(a;, 0) and a = maz(—az, 0),

is used and {e;} is a sequence of i.i.d. random variables with mean zero and
variance unity. Li and Li (1996) studied the following threshold asymmetric
process which shares much in common with (1.1), with successful applications to
Hong Kong Hang Seng Index(HSI);

hi = agp + all(Zttl)2 + alz(Zt__l)2. (1.2)

Higgins and Bera (1992) introduced a class of power transformed ARCH pro-
cesses which is appropriate for improving forecast accuracy and for achieving
normality or symmetry of the density f(-) of e;. The first order model is speci-
fied as

hi = ap + al(Zf_l)T, (1.3)

where the power r is positive and note that 7 = 1 gives standard Engle’s ARCH(1).
The conditional variance h; is concave in Z2 ; for 0 < r < 1 and is convex for
r > 1. Refer to Higgins and Bera (1992) for excellent remarks on an interpre-
tation of power transformations in the context of econometrics. In this article
we propose a new class of models possessing threshold-asymmetric conditional
variances to which distinct power transformation parameters are applied accord-
ing to the signs of Z;_1, and therefore generalizing aforementioned ARCH type
processes. The developed model is given by

hi* = ap + au(th_l)” when Z;_1 >0
A2 = ag + a19(Z2 )™ when Z;_1 <0, (1.4)

where a9 > 0 ; aj1,a12 > 0; 11,79 > 0. Notice that the conditional variance
hs is continuous on the whole real line of Z;—;. The main goal of the paper is
to motivate the model to be an applicable class in asymmetric ARCH context
and therefore we are mainly concerned with exploratory and practical modeling
steps such as how to numerically estimate model parameters and in turn pursuing
comparative study of (1.4) with traditional models in the literature. The paper is
organized as follows. Section 2 briefly addresses the stationarity of the models and
a set of conditions for the existence of stationary moments is presented. Parame-
ter estimation is discussed in Section 3 where both the iterative least squares(ILS)
and pseudo maximum likelihood(PML) algorithms are given. Section 4 reports
a comparative data analysis for Korean Stock Prices Index(KOSPI), from which
it is observed that (1.4) is better than traditional models.
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2. THE PROPOSED MODEL
Define Z;_; measurable (binary) random quantities
Ry, = Tll[Zt_l > 0] + 7'2I[Zt_1 < 0]

Q1 = allI[Zt_l > 0] + algI[Zt_l < 0]

Here I[-] stands for the standard indicator function. The proposed model in (1.4)
can then be written in a compact way

Zy=/hi-es, B =g+ ay_y - (Z2 )R (2.1)

Notice that (2.1) includes as special cases (1.1) and (1.2) according to r{ = rp =
1/2 and 7 = r = 1, respectively. Define

T = maz(ry, ro)
and consider the following subset region of parameter space, given by
aHE(ezr)Qr +a12E(et_)27 < 1. (2.2)

(C1) . The common probability distribution of {e;} is absolutely contin-
uous with respect to Lebesgue measure and has a support on the whole real

ine(—o0, 00).

THEOREM 1. Assume (C1) and (2.2). Then {Z,} defined in (2.1) satisfies
the following.
(1) {Z;} is geometrically ergodic and strictly stationary.
(2) E|Zy|*" is finite where the expectation is taken under the stationary distribu-

tion.

REMARKS . The results (2) concerning finiteness of moments up to certain
crder will be neeced in applying CZT” and the ergodic theorem to various statis-

1.3) and the stationarity condition (2.2) is identical with those in Higgins and
Bera (1992).
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PROOF. To provide outlines of the proof, note first that {Z;} in (2.1) is a
Markov process and thus we may establish the geometric ergodicity and strict
stationarity of {Z;} by employing various sets of conditions for Markovian time
series. Refer to, for instance, Feigin and Tweedie (1985). According to Tweedie
(1975), it suffices to verify three conditions for the geometric ergodicity of {Z;}

(i) {Z:} is ¢-irreducible for a o-finite measure ¢.
(ii) The transition probability is strongly continuous.

(iif) There exist constants b and ¢ such that, for all z > b, r, < —c and for all z
with z < b, r, is bounded above where

Ty = E(Zt ' Zt—l = Z) —Z. (23)

The verification of (i), (ii) and (iii) are straightforward but rather tedious. Fol-
lowing the lines as in Hwang and Kim (2004), under the condition (C1) and (2.2),
one can deduce (1). For details together with the proof for (2) regarding the ex-
istence of stationary moments, refer, for instance, to arguments as in Hwang and
Basawa (2004). Details are omitted. O

3. NONLINEAR AUTO-REGRESSION AND PARAMETER ESTIMATION

It is well known that the conditional(on the data at hand) mean serves as
MMSE(minimum mean squared error) point forecast for the time series and 95%
forecast interval is of the form

conditional mean +1.96 - \/h_t,

where 95% level coefficient 1.96 may be replaced by more conservative value,
for instance, 2. We are now willing to incorporate nonlinear conditional mean
function p;_1, say, into (2.1). Consider the observable time series {X;} generated
by unobservable innovations {Z;} specified in (2.1). Formulate

Xt —w-100) = Z;

Zi=vhi-e, ' =ag+oy - (Z2,)R, (3.1)

where p;_1(6) denotes the conditional mean of X; given the past observations.
Of course the conditional variance of X; given the past observations is denoted
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by hy. With appropriate choices of p;—1(6), (3.1) accommodates diverse non-
linear autoregressive(AR) processes such as threshold-AR and exponential-AR
models(cf. Tong (1990)). Note that the parameter (vector) 6 is indexing the
conditional mean. Collect parameters appearing in h; as

B = (ao,a11,6¥12,7"1,7’2)-

In crder to emphasize the dependency of h; both on 6 and 8, we will use h:(0, 8)
in stead of hy. Denoting ¢ = (0, 8) with the dimension k, we proceeds to discuss
estimation methods which do not reguire the specification of the distribution f(-)
of e;. Let Xy, X9, -+, X, be given data. First, taking into account heteroscedas-
ticity, the weighted least squares estimator of # and 3 is obtained by minimizing
with respect to ¢ = (8, )

> 1Xe = ne-1(0)° /a6, B). (32)
t=1

As indicated by Li and Li (198%), optimizing (3.2) entails complications in
that parameter 6 appears simultaneously in the mean function p¢—(6) and the
variance function h(6, 3). Moreover for the model (3.1) with a complex nonlin-
ear py—1(6) and the random power R;_; the problem would become much more
complicated. To circumvent, ILS(iterative least squares, cf. Li and Li (1996) ;
Hwang and Basawa (2003)) method can be adopted. ILS consists of the following
steps.

(ILS-1) Minimize £(X; — pe—1(8))? with respect to 0 to obtain .

(ILS-2) Minimize £(X; — pe_1(8))2/hs(8, 8) with respect to 8 to obtain 8.
(ILS-3) Minimize $(X; — ps—1(8))2/h¢(6, B) with respect to 8 to obtain 8.
(ILS-4) Go to (ILS-2) with 8 replaced by . Repeat (ILS-2) to (ILS-4) until ob-
taining satisfactory convergence between consecutive iterations.

The resulting estimatcrs from the steps above are called ILS-estimators for § and
B. Under some regularity conditions(see for instance Hwang and Basawa (2003)),
~LS estimators can be shown to be asymptotically equivalent to the weighted least
squares estimators and therefore they are shown to be asymptotically normally
distributed. We now present

PROPOSITION 1. As the sample size n goes to infinity, ILS estimator ¢/1;5 =
(rrLs,Brrs) for ¢ = (8, B) satisfies the following.

V(drrs — ¢)-HN(0,A71BA™Y),
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where
A = plim[n Za% (6)/0¢%] : k x k matriz,
and
B = E[(aqgtgﬁ) )(81/;;4)) )T] : k x k matriz,
with

Pe(@) = [Xs — pe-1(0)12/ a6, B).

Second, we are interested in discussing pseudo-maximum likelihood estimation
of parameters. Assume for the moment that {e;} is Gaussian. The log-likelihood
l,(¢) (conditional on the initial value) of the data X1, Xs,---,X, is given by,
apart from constants,

¢) =Y (9), (3.3)
t=1
where
1i(¢) = —nloghy(¢)/2 — Z;(0)?/2hi(9), (3.4)
with

Zt(e) =Xy — ﬂt—l(o)-

The value ¢;]\\,1 1, obtained by maximizing l,,(¢) is referred to as pseudo-maximum
likelihood estimator. Properties of ¢;EL depends upon the true distribution f(-)
of e;. Denote first order partial derivative(w.r.t.¢) k x 1 vector and second order
partial derivatives matrix : k X k matrix, by D[] and D?[-] respectively. Define
two matrices

It(¢) = —E;(D*[ls(9)]) and J;(¢) = Ef(D[le(¢)] - Dle()]"),  (3.5)

where E(-) indicates expectation under the true distribution f(-) of ;. Under
regularity conditions, it can be shown that ¢pps is asymptotically normal. Refer
to Gouerioux (1997, ch.4) for details.

PROPOSITION 2. Under the true distribution f(-) of e;, we have

Va(¢pmr — ¢)-SN(0, 17 JT7Y).

In particular when f(-) is normal I = J holds and thus

Valgpmr — $)-5N(0,J7).
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One-step scoring algorithm(cf. Engle (1982) in ARCH context) can be used

e

for obtaining pseudo MLE ¢pp1.

(PML-1) Take initial value ¢(0) for ¢.
(PML-2) Update estimate via

$(1) = ¢(0) + [Fn(4(0))] " Gn(4(0)) (3.6)
where o
F.(¢) = Z D?[ly(¢)] : k x k matriz,
t=1
and

Gn(¢) =Y Dll(@)] : k x 1 vector.
t=1

(PML-3) Repeat (PML-2) with ¢(1) replacing ¢(0) on RHS of (3.6) until conver-
gence.

Then, the resulting value ¢(1) becomes ¢;-1\;L- It is recommended that the initial
value ¢{0) be y/n - consistent estimate of ¢ for facilitating the desired convergence
in (PML-3). One can choose ¢(0) = ¢;s in view of Proposition 1.

4. EMPIRICAL STUDY

This section is concerned with an application of the proposed model (3.1)
to Korean Stock Prices Index(KOSPI) data. The size of the daily data is 1096
ranging from January, 3, 1995 to December, 28, 2002. First, we transform the
data using the log differences of the successive data to ensure the stationarity.
Let ry be original current index of the stock market at time ¢ and then we denote

T 1 & Tt
Xy =100 x {Icg 1 n ; log — }
The transformed X; is usually referred as the return rate. The original data r;
and the transformed data X; are depicted in Figures 1 and 2, respectively.

It is reasonable to say that diverse mean functions y;1(6) may be consistent
witk the data and the final choice of p;—1(0) relies heavily on subject consid-
erations. In order to employ a threshold asymmetry in the mean function, we
postuate

pe-1(0) = X, +6.X, . (4.1)
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FIGURE 4.2 Transformed data (X¢)

For modeling heteroscedasticity, standard Engle’s ARCH is denoted by [M1].
TARCH model in (1.1) is employed as [M2]. Li and Li (1996) and references
therein argued that the conditional mean and conditional variance in financial
time series are probably asymmetric and thus they have chosen threshold models
simultaneously for y; 1(6) and h; in order to analyze Hong Kong Hang Seng
Index(HSI) data. Their model is referred to as [M3] below. These models however
assume intrinsically symmetric conditional variance h;. Our model in (3.1) admits
asymmetric power transformation on the conditional variance both for improving
forecast accuracy and for achieving normality and/or symmetry of the density
f(-) of e;. The sample period for daily KOSPI data includes one bear market
period(Aug. 97- May 98) and one bull market period(Mar. 99 - Dec. 99).
Bear market period is due to IMF (International Monetary Fund) crisis in Korea.
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TABLE 4.1 Estimates for the parameters

Model 91 92 Cfo d1 O?z 7:1 ’I‘A2
M1 0.192 | —0.195 | 2.180 | 0.199
M2 0.195 | —0.196 | 1.911 | 0.235 | 0.265
M3 0.139 | —0.242 | 2.280 | 0.223 | 0.309
M 0.194 | —0.198 | 2.037 | 0.203 | 0.331 | 0.967 | 0.980

69

Accordingly threshold-asymmetries both in conditional mean and in conditional
variance may be expected to be prominent in the data. The proposed model (3.1)
is abbreviated as [M].

[M]

1]

(M2]

[M3]

rameters.

Zy=/hy e, W' =0+ oy - (22 ,)F

Three competing models explained above are given as follows.

Zy=vhs e, Vhi=op+anZi | +a2Z;,

X~ 60X —0,X, = Z

X — 00X}, — 0.X7, = Z,
Zi=\hy ey, hy =00+ alztz_l

Xt - 61Xt+_1 — 02Xt_—1 = Zt

Xe— 01X}, —0.X_, =2
Zi=hi e, he=ap+an(Z))? +an(Z,)?

We adopted the ILS(iterative least squares) method to calculate the model pa-

For instance, [M1] is formulated as

The suggested model [M] is estimated by

X, — (0.192X;} | - 0.195X," ) = Z

Zy = v/hs - e, hy =2.180 +0.199Z7 ;.

X, — (0.194X;t, — 0.198X; ;) = Z,
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TABLE 4.2 Average length of 95% Pl(one step ahead prediction)

Model | Length of PI
M1 7.340
M2 7.303
M3 7.331
M 7.222

Zy = \/h_t ¢, hft"l =2.037 + o1 - (Zf—l)Rt"la

with
R, 1 =0.9671{Z;_; >0]+0.980I[Z;—; < 0],

and
o1 = 0.2031[Z,_, > 0] +0.331I[Z,_1 < O]

In Table 4.1, it is noted that estimates in each model are not quite different
from one another. Examining 6, and 6y, the absolute values of 6, are greater
than those of 6; across all models. Also, values of dy are considerably greater
than those of a;. This reflects asymmetric pattern of the volatilities of the stock
market. Regarding [M], the estimates of 71 and r3 are close to 1. It indicates
that the model may be quite similar to [M3].

For each model, one step ahead 95% prediction interval (PI) for X; is given
by

(01X, + 62X, ;) = 1.96y/h,

and hence length of PI is defined as 2(1.96 \/hT) Empirical average length of PI
is computed for each models and is reported in Table 4.2. Our model [M] clearly
provides the smallest length of 95% prediction intervals among the models. This
indicates that [M] exhibits the most accurate prediction interval for the future
values and thus [M] deserves much attention in analyzing KOSPI data in terms
of asymmetric volatilities.
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