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POISSON ARRIVAL QUEUE WITH ALTERNATING
SERVICE RATES '

Jonewoo Kim! Eutr Yong LEe?anDp Ho Woo Leg?

ABSTRACT

We adopt the PAM,T policy of dam to introduce a service policy with al-
ternating service rates for a Poisson arrival queue, in which the service rate
alternates depending on the number of customers in the system. The sta-
tionary distribution of the number of customers in the system is derived and,
after operating costs being assigned to the system, the optimization of the
policy is studied.
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1. INTRODUCTION

After Faddy (1974) introduced a PM policy for a finite dam, Yeh (1985)
generalized the policy to introduce a P){‘:’T policy; the release rate of water is
changed instantaneously from 0 to M (from M to 0) when the level of water in
the reservoir upcrosses A (downcrosses 1), where M > 0 and A > 7 > 0. See Yeh
(1985), Abdel-Hameed (2000), and Bae et al. (2003) for details.

We, in this paper, apply the P% policy to introduce a service policy with
alternating service rates for a Poisson arrival queue. The system is initially
empty and customers arrive according to a Poisson process of rate v > 0. The
server starts to work on an arrival of customer at a service rate y; > 0, that
is, the customers are served for an exponential amount of time with mean 1/p;.
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However, if the number of customers in the system reaches A (integer-valued),
the service rate is increased to po > p1, so that the customers, including the one
being served at the moment, are now served for an exponential amount of time
with mean 1/us. The fast service rate is continued until the number of customers
becomes 7 (integer-valued, 0 < 7 < A). At this point the service rate is changed
to the ordinary service rate u;. The service rate gets uo again if the number of
customers in the system reaches A before the busy period ends, otherwise, the
server finishes the present busy period with ordinary service rate p;. We assume
that puo > v for the stability of the system.

A similar model for finite message storage buffer was studied by Li (1989). The
stationary distribution of the queue length was obtained through the generator
matrices. In present paper, an explicit formula is obtained for the stationary
distribution of the number of customers in the system by using the decomposition
technique introduced by Lee and Ahn (1998). After assigning operating costs to
the system, we calculate the long-run average cost per unit time and show that
there exists a unique fast service rate which minimizes the long-run average cost
per unit time.

2. STATIONARY DISTRIBUTION OF THE NUMBER OF CUSTOMERS

Let {N(¢),t > 0} be the process of the number of customers in the system.
Note that the time 0 and the epochs where busy periods end form embedded
regeneration points of {N(t),¢ > 0}. Denote by T the length of a cycle, the
interval between two successive embedded regeneration points, and by T} (7T2) the
total length of periods with service rate ) (p2) in a cycle. That is,

E[T] = E[T1]+ E[T2} + %

where 1/v is the expected length of idle period. Note that {N(¢),¢ > 0} is
non-Markovian, hence, we decompose {N(t),t > 0} into three Markov processes
{N1(t),t > 0}, {No(t),t > 0}, and {N3(t),t > 0}. Process {Ni(t),t > 0} is
formed by separating periods of service rate p; from the original process and
connecting them together. Process {Ny(t),t > 0} is similarly formed by sepa-
rating and connecting the periods of service rate us. Process {N3(t),t > 0} is
formed by connecting the rest of the original process, that is, N3(t) = 0 for all
t>0.

Let P(n) be the stationary distribution of {N(t),¢ > 0} and Pi(n) be the
stationary distribution of {N;(t),t > 0}, for i = 1,2. Since E[T;]/E[T] is the
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long-run proportion of time that {N;(t),t > 0} takes in the original process
{N(t),t >0}, for i = 1,2,

ET: 1/v
= B 1(n) + E[[Jf]]PZ(n)+E%I{“=°}’

forn=0,1,2,..., where 14 is the indicator of event A.

Define T} as the length of the first passage time from the starting point of
busy period to the epoch where the number of customers reaches either 0 or A,
while p; as the probability of reaching A, T3 as that from the epoch where the
service rate is changed to ps to the epoch where the number of customers reaches
7, and T7 as that from the epoch where the service rate is changed to pu; from
12 to epoch where the number of customers reaches either 0 or )\, while py as the
probability of reaching A. Then, due to the strong Markovian property, we have

E[T1] = B[T{] +

D1
E[17
2 E{ry]
and

4!
1-po
It is well-known in the theory of Markov process that

E[D) = E[T3).

1—(m/v)

= (/o)™ if wy # v,
b= 1

X if pp =v,

and

1= (m/v)"

LA I
pp = 1= (mp® T

T

N if py = v.

Tc derive E[T}], we need the following two lemmas:

LEMMA 2.1. Consider a process M(t) = N(t)— (v —p1)t, after a busy period
begins in {N(t),t > 0}. Then, M(t) is a martingale with E[M(t)] = 1 until N(t)
reaches either state 0 or \.
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PROOF. Denote by {F;} the filtration of 0{N(s),0 < s < t}. For s <t,

E[M(t) | Fs] = E[N(t) — (v — m)t | Fs]

= E[N(t) = N(s) + N(s) = (v — p1)t | F]

= E[N(t) = N(s) | Fs] + E[N(s) = (v — m)t | F4]
= —pm)t—s)+N(s)—(v—p)t

=N(s)— (v —p1)s

PROOF.

d

= M(s).

sup [M(T{ At)|
>0

g
LEMMA 2.2. Efsup,s |M(T} At)|] < oo, where T} At = min(T}, t).
] —E| sup M)
[ 0<i<T}
=E| sup |[N(t)—(v— ul)tlJ
[ 0<t<T}
<E| sup (N@)+v—mlt)
| 0<i<T}
<E| sup N(t)|+v—ml|E[T]]
| 0<t<T}
<A+ v — p|B[T]]
< 00,
0

since E[T}] < oo.

Since T is a Markov time and Pr{7}! < oo} = 1, applying the optional sampling

yields

A v

theorem(Karlin and Taylor (1975, p.259)) to M(t) gives E[M(T})] = 1, which

1/v

Bir) = { 1= a7 1= /oy

v’

lf:u’l 751/7

if[,bl =V.



QUEUE WITH ALTERNATING SERVICE RATES 43

A similar argument to the above yields

(M-
) A= G/ (L= (/o)) 1= ey 70
| r(A 1) o
‘2—,/’ iy = v.

E[T}] can be easily derived from the queueing theory as follows:

A—T

E[Ty] = o

To evaluate P(n), it remains to obtain P;(n) and P»(n), which can be done
thrcugh establishing balance equations. The balance equations for P;(n) are

(v +p)Pi(1) = p Pi(1) + p P1(2),
(v+u))Pi(n)=vPi{n—1)+mPi(n+1), for2<n<Ai-2,n#r,
(v+p1))Pri(1) =vP(T— 1)+ mPi(T+1) +vFP(A—1),

v+ p)PA(A-1) =vhA(A-2),

which, with Z;\l;ll Pi(n) = 1, have a unique solution given by, forn=1,2,...,,

(,U1/1/)T_n {1 _ (#1/’/)} {1 — (ul/y))\—-r}

b if b

Pin) = 4 =1 L= (u/)} — (/o) + (/)> 7
2(A—1) P

AA=1) —7(r -1y BHA=Y

forn=7+1,7+2,...,2 -1,

0= {i-um*) )

Pin) =4 O— 1) {1 = (/o)) — (fo) + (fo) 77

2\ - n) .
1 1=V,

AMA=1) —7(r~1)
and the balance equations for Py(n) are

(v +p2)Po(7 + 1) = pa Po(7 + 2),
(v+p2)Po(n) =vPy(n—1)4+ uePy(n+1), forn>7+2,n#A,
(I/ + /LQ)PQ()\) = H2P2(T -+ 1) + I/PQ(A — 1) + MQPQ()\ + 1),
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which, with 377 ., P»(n) = 1, have a unique solution given by

M forn=7+1,...,A-1
P2(n)= A—_T b A—T b 2 I’
(v/ua)* > {1 = /2" }
g , form=XMA+1,....

3. OrpTIMAL FAST SERVICE RATE

In this section, after assigning costs to the system, we calculate the long-run
average cost per unit time and show that there exists a unique fast service rate
minimizing the long-run average cost per unit time. We consider the following
four costs:

e c;(p): the operating cost per unit time while the server is working with
service rate u, where ¢;(0) = 0.

e co(p2): the cost needed to increasing the service rate to pg, where co(py) =
0.

e c3(n): the penalty per unit time for the heavy traffic when N(t) = A + n,
forn=1,2,....

e c4: the penalty per unit time while the server is idle.

We assume that ¢;, co, and c3 are all nonnegative strictly increasing functions,
and that ¢, and ¢ are twice differentiable convex functions.

First of all, from the results in section 2, the expected length of a cycle can
be expressed as a function of us,

A—T 1

l—papo—v v

B[T] =

The expected costs during a cycle corresponding to the above four costs are
obtained as follows:

e Eloperating cost] = E[Ti]c1(u1) + —%:‘z_u c1(p9)-

o Elswitching cost] = {25-ca(p2)-

e E[penalty for heavy traffic] = 2 RGO Yoo ca(n) (uiz)n

—p2 po—v n=
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s E[penalty for idie period] = &

45

The foregoing enable us to establish the following long-run average cost per unit

time:

1 (p2—v) (A+ca(pg)) + (N = 7)er(p2) + alp2)
1—py (BT +1/v)(pe—v)+p1(A—7)/(1 —p2) ’

where A = (1 — p9) (E[T1]e1(p1) + ¢4/v) /p1 and

o= {1- () T} So ()"

n=1

Clu2) =

An algebra shows that a(u2) can be written as

(3.1)

2>:j§c3(n)(£)”+ 5 (@) ~eam-r+m) (Z) . 62

n=A-7+1
From equation (3.1), we have

b1 (p2) — ba(p2)

C'(pa) = —2 7
1 —p2 {(E[Th]) + 1/v) (p2 —v) + ;1A — 7)/(1 — p2)}
where
bin) = { (BT + 2 ) =)+ T2 0= ) iz = 1)k
+{ (B + 1) e -0+ 200 -0 = o)
- (B + 1) (= mean) + T2 = (A4 o)
and

ba(p2) = (E[Tll + 11/) a(p2)

1-p2

~{ (B +2) -+ 2= ),

Notice that b)(u2) is strictly increasing, since ¢; and cp are strictly increasing
and twice differentiable convex functions. By differentiating equation (3.2) twice
with respect to gz, we observe that a”(u2) > 0 and thus ba(p2) is decreasing. It
is obvious limy, o0 b2(p2) = 0. In order to see limy, o b1 (2) > 0, we need the

following lemma:
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LEMMA 3.1.

N
lim inf (p2 — v)ci (u2) > 1.
H2—00 C1 (;1,2)

PROOF.

—— v)ci (p2) _ imin (n2 — v)ey(p2) c1(p2) — c1(v)
it c1(p2) s alpe) —alv)  alps)
imin (2 — v)cy (u2) imin c1(p2) — a1(v)
Z (‘u?ioof 1) - cl(u)) <lu€“—»oof 1 (2) )
— liminf (#2 = V)¢ (42)
wa—oo (c1(p2) — a1 (v))’

since lim inf,, ,oo(c1(p2) — 1(v))/c1{p2) = 1. By the mean value theorem, there
exists gz (v < fia < p2), which depends on ps, such that

c1(p2) — e1(v) = (u2 — v)c, (52)-
Hence,

. ’ ’
lim inf 2 = 2)¢1 (12) > lim jnf 1(42)
po00  cy(p2) ua—0o ¢} (fia)

> 1.

O

By lemma 3.1, we can see that b;(u2) and ba(u2) cross each other at most once.
Therefore, we have the following theorem:

THEOREM 3.1. There exists a unique fast service rate p5 which minimize the
long-run average cost per unit time C(u2).

REMARK 3.1. When p9 >y > v,

(1) if b1(11) > ba(m1), C(u2) is an increasing function for us > p; and hence
minimized at po = u;.

(i) if by(u1) < ba(p1), there exists pud > p; such that C'(ug) < 0 for po < 3
and C'(u2) > 0 for up > p3. Therefore, C(uy) is minimized at po = u3,
which is the unique solution of equation by () = bo(us).
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