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Optimal Packet Scheduling Algorithms for Token-Bucket
Based Rate Control

Neerav Bipin Mehta and Abhay Karandikar

Abstract: In this paper, we consider a scenario in which the source
has been offered QoS guarantees subject to token-bucket regula-
tion. The rate of the source should be controlled such that it con-
forms to the token-bucket regulation, and also the distortion ob-
tained is the minimum. We have developed an optimal scheduling
algorithm for offline (like pre-recorded video) sources with convex
distortion function and which can not tolerate any delay. This op-
timal offline algorithm has been extended for the real-time online
source by predicting the number of packets that the source may
send in future. The performance of the online scheduler is not
substantially degraded as compared to that of the optimal offline
scheduler. A sub-optimal offline algorithm has also been developed
to reduce the computational complexity and it is shown to perform
very well. We later consider the case where the source can tolerate
a fixed amount of delay and derive optimal offline algorithm for
such traffic source.

Index Terms: QoS, rate control, rate distortion, token bucket regu-
lator.

1. INTRODUCTION

In next generation Internet offering quality of service (QoS),
the traffic flow is required to declare its traffic characteristics
and the QoS attributes. The traffic characteristics are usually
specified in terms of traffic descriptors. Commonly used traffic
descriptors are linearly bounded arrival process (LBAP) [1]. An
LBAP constraint bounds the maximum number of bits that a
source may transmit in a given interval ¢ by a linear function of £.
The source employs traffic shapers and the network polices the
traffic using traffic regulators to ensure that the source adheres
to the advertised traffic descriptions. A simple traffic regulator
for an LBAP descriptor is the token bucket regulator which has
two parameters—the token generation rate r and the size of the
token bucket B.

The selection of appropriate values of traffic descriptors that
characterize a traffic source well, can be very difficult [2]. More-
over, the network may be offering only a discrete set of combi-
nations of the token bucket parameters from which the source
would be required to choose. Thus the source may not always
obtain its exact requirements from the network. In this paper, we
consider a scenario in which the source has been offered QoS
guarantees subject to certain parameters of token-bucket regula-
tion. The source is required to schedule the size of its packets
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to adapt to these constraints. We argue that of all the packet
length schedules that honor the imposed traffic constraint, one
that minimizes the distortion may be the most appropriate one
to choose. In our earlier work [3], an optimal algorithm that
solves this problem has been developed under the condition that
the scheduler has complete knowledge of the number and arrival
times of all the packets. But the algorithm is optimal only for
min-max distortion cost. The work presented in this paper gen-
eralizes our work in [3] in the sense that we have considered a
general cost structure (and not a specific cost assumed in [3]).
The treatment of the problem in this paper is completely dif-
ferent from that of [3]. Moreover, we have also extended our
framework to the traffic with delay tolerance.

The primary contribution of this paper is to develop an op-
timal offline scheduling algorithm which minimizes a general
distortion cost while conforming the traffic to the token-bucket
regulation. The only requirement on the distortion function is
that it should be convex in the output number of packets. This
criterion is satisfied by most distortion functions including mean
square loss, proportional mean square loss, exponential, etc.

We have also shown how this optimal offline scheduler can
be used in conjunction with a predictor to implement an on-
line scheduler in which the scheduler does not have knowledge
about the number of packets that may arrive in future. The on-
line scheduler can be very useful to control the rate of real-time
traffic. To demonstrate how an online scheduler can be imple-
mented, we have used 3 types of predictors: (i) Linear minimum
mean square error (LMMSE) predictor, (ii) stationary predictor,
and (iii) normalized least mean square (NLMS) predictor. Most
of the online schedulers are computationally very expensive and
that is primarily due to the complexity of the optimal offline al-
gorithm.

To reduce the processing delay, a real-time system has to be
computationally inexpensive. The optimal solution of the sta-
tionary predictor in conjunction with the optimal offline sched-
uler reduces to a very simple analytical expression which de-
pends only on the number of input packets at the current time
instant. Hence it is very easy to implement this online sched-
uler. To implement other online schedulers, we have developed
a heuristic offline scheduling algorithm. This algorithm, when
used in conjunction with LMMSE and NLMS predictors, re-
duces the computational complexity while at the same time, the
degradation in performance is not significant.

A. Related Work

In the literature, many rate control algorithms have been pro-
posed for multimedia sources. Some of the representative work
can be found in [4]-[8]. Most of these rate control algorithms
adapt the output rate of a video source such that the distortion
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is minimized. In all the schemes presented in the above papers,
the rate of video is controlled at the encoding stage according to
the available bandwidth.

In [5], the authors have considered the problem of optimiz-
ing distortion for constrained VBR streaming in ATM networks.
The authors have proposed a complex Viterbi algorithm for
quantizer sclection at encoder based on apriori knowledge of
distortions associated with each choice.

For unconstrained streaming, the problem of joint optimiza-
tion of average bandwidth consumption and distortion or that
of rate-distortion optimized streaming of video has been dealt
with in many works. In [9], the authors have considered a lossy
best-effort network and presented transmission schemes for rate
distortion optimized streaming of packetized media in such net-
works. The authors have used an MPEG-type data dependency
model of frames for modeling distortion. However, only the
mean or expected values of rate and distortion were consid-
ered in their analysis. In [10], a similar problem pertaining to
streaming of scalable media consisting of independent frames
in best effort networks has been dealt with. In [11], the authors
have considered the problem of delay constrained transmission
of layer-encoded multimedia presentation in a network with lim-
ited constant bandwidth. They have used a MINMAX measure
of distortion for evaluating the presentation quality.

Our work differs from all these papers. We consider a net-
work model which is based on the QoS framework and seek a
packet length scheduling policy under given constraints on both
rate and burstiness. Unlike some of the aforementioned works,
our distortion model does not take into account temporal depen-
dencies that may be present in the data units sent in different
time-intervals. Such dependencies, which may be represented
by an acyclic graph are characteristic of video coding schemes
and can result in error propagation over finite durations. This
simplification, applicable under reasonable assumptions, allows
us to present a distortion model that is simple to analyze and
at the same time not tied to any specific coding scheme. Our
formulation thus is not specific to any video source and can be
applied to an LBAP traffic source that exhibits properties of loss
and delay tolerance.

In Section II, we introduce the model and the notations used
throughout this paper. We also formulate the problem in Sec-
tion II. The optimal offline algorithm is presented in Section III.
In Section IV, we extend the optimal offline algorithm to the on-
line case and compare the two using simulations. In Section V,
we develop a heuristic offline scheduling algorithm which is
computationally inexpensive and then extend it to the online
case using prediction. In Section VI, we extend our formula-
tion to the case where the source can tolerate a fixed amount of
delay. Section VII outlines the future work and concludes the

paper.

II. PROBLEM FORMULATION

Let £ = (t),---,ty) denote the times at which the source
emits the packets and they arrive as inputs to the token-bucket
regulator as shown in Fig. 1. Let £ = (x1,---,zy) denote the
number of packets that the source sends at time £. We assume
that the application is real-time and the packets are considered
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Fig. 1. The token-bucket regulator.

useless if they are delayed by the token-bucket regulator. The
token-bucket regulator outputs the packets instantaneously. Let
¥ = (y1, -, yn) denote the number of patkets that are output
by the token-bucket regulator at time t: Hence at time ¢;, z; — y;
number of packets are dropped. Let R = (Ry,---, Ry) denote
the number of tokens refilled at time 7. Biax is the maximum
number of tokens that the bucket can hold. We assume that the
tokens are refilled just when the packets arrive and hence, they
do not add to the tokens in the bucket before the packets leave.
Let B = (By,---,B ~) denote the number of tokens remain-
ing in the bucket just before the packets arrive. The vector %
conforms to the token-bucket regulation.

Definition 1: A schedule ¥ = (y1,---,yn~) of output num-
ber of packets is conformant to the token-bucket regulation if

M

where the number of remaining tokens in the bucket is updated
as

y; < min(z;, B; + R;), Vi€ [1,N],

Biy1 = min(Bmax, Bi + B — i), Vie [l,N-1]. (2)

We assume that the rate-distortion curve of the source is not
known. Hence it is reasonable to assume that the distortion at
the time instant ¢, does not depend on any other time instant.
Let C(x;,9;,¢) denote the distortion cost when only 1; packets
of the total z; input packets are output at time instant ¢;. The
distortion cost function is assumed to satisfy the following:
1. C(mi,yi,i) >0, Vie [LN]
2. C(z4,v:,1) is monotonically decreasing iny; € [0, z;] with

C(z4,24,7) =0, Vie[1,N].
3 C(zi,y:,1) is convex in y; € [0, z].

Assumptions 1 and 2 are obvious. Assumption 3 is valid for
most distortion cost measures such as mean square loss, propor-
tional mean square loss, exponential, etc.

Definition 2: A schedule y* of output number of packets is
optimal if it is conformant to the token-bucket regulation and
there is no schedule 3 for which the distortion cost is less than
that for the schedule y*, given the token-bucket parameters.

! Note that we have considered a more general token-bucket regulator. The
standard IETF token-bucket regulator is a special case realized by setting inter-
arrival times to be constant and R; = R, Vi € [1, N].
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Fig. 2. An instance of sub-sequence 2 of length M.

We seek an answer to the following question: How should the
schedule ¢ be chosen such that it is optimal?

We first consider the problem of designing an optimal “of-
fline” algorithm, assuming that the vector Z is known. We then
extend it to the online algorithm by predicting the number of
packets that may arrive in future.

III. OPTIMAL OFFLINE SCHEDULING

In this section, an optimal offline scheduling algorithm is
formulated. Suppose 7 is the optimal schedule. It is proved
in the appendix (Lemma 1) that to achieve optimality, y; >
min (z;, max(0, Rj — Bmax)), V4 € [1,N], with y; < z;.
Hence, the sequence of time indices [1, N] can be divided into
two alternating sub-sequences: (i) Sub-sequence of type 1 for
which y; = z; < max(0, R; — Bmax), and (ii) sub-sequence of
type 2 for which max(0, Rj — Bmax) < y;j < ;.

For example, suppose Z = (3,9,5,1,10,11,6,2, 3,8,9). As-
sume that R; = 7, Vi € [1,11}, and Bpax = 2. Hence the
vector Z can be divided into sub-sequences: (i) (3), (i1) (9),
(i) (5,1), (iv) (10,11,6), (v} (2,3), and (vi) (8,9). The sub-
sequences (i), (iii), and (v) are the sub-sequence of type 1 and
the sub-sequences (ii), (iv), and (vi) are the sub-sequence of type
2. There is no distortion obtained in the sub-sequence of type 1.
Hence the aim is to minimize the distortion in the sub-sequence
of type 2.

Consider an instance of sub-sequence of type 2 of length M,
starting at index ¢ and ending at index ¢ + M — 1 as shown in
Fig. 2. It is proved in the appendix (Lemma 2) that for optimal-
ity, y; > min(z;, R;) and gy pr—1 2 min(zippr—1, Rigpr—1)
with the constraint that the schedule ¢ is conformant to the
token-bucket regulation. Hence the minimum allotment re-
quired in sub-sequence 2 is

y; = min(z;, R;),
Yitm—1 = min(z; 4 pr—1, Riypr—1), and
y; = max(0, Rj — Bmax), Vi €[i+1,44+ M -2].

After the above step, if the allocation is not optimal, then it
means that it should be possible to reduce the distortion cost by
adding at-least one more packet at some time instant, say .

Assume that the distortion cost function C(zj,y;,7) is
strictly convex in y;, Vj € [1,N], and the cost reduced by
adding a packet is positive. We will later argue that the algo-
rithm remains optimal even if C(z;, y;, j) is convexin y;, Vj €
[1, N] and the cost reduced by adding one more packet is non-
negative.

Definition 3: Marginal cost associated with the addition of a
packet is defined as the reduction in the distortion cost obtained
when that packet is added to the present output schedule.

Since the distortion cost function C(z;,y;,7) is assumed to
be strictly convex in y;, Vj € [1, V], the marginal cost associ-
ated with the addition of a new packet decreases as more packets
are added to the schedule at that time instant. Hence at any time
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instant, the first packet has the highest marginal cost and the
last packet has the least marginal cost. Quite clearly, for any se-
quence of time indices [¢, 7+ M —1], it is possible to add packets
to the schedule such that the marginal cost associated with each
additional packet is non-increasing.

It is proved in the appendix (Lemma 3) that a conformant
schedule ¥/ is optimal only if there does not exist a conformant
schedule ¢ which can be derived from ¢ by adding a packet at
any time instant.

From above, we can argue that an optimal schedule can be
obtained if the packets are added to the schedule such that the
marginal cost associated with each additional packet is non-
increasing, and the packets are added till no more packet can be
added to the schedule while conforming it to the token-bucket
regulation. It thus follows that an optimal allocation should pro-
ceed as follows.

At each iteration, we calculate the marginal cost AC; associ-
ated with a new packet at each time instant ¢;. Suppose k is the
time instant at which the reduction in the distortion cost is the
maximum.? Increase ¥, by 1, i.e., make yp = yx + 1.

Next we calculate the tokens remaining in the bucket at each
time instant between ¢ and ¢ + M — 1 using (2). Adding a packet
at time index k reduces the number of tokens remaining in the
bucket by one for the time indices [k + 1, p], where p is such
that B, + R, — ¥p > Bmax. As a result, this may lead to
a violation of the token-bucket regulation at some time index
l € [k,p—1),ie., y > B+ R;. If this happens, the packet
that was added at the time index & has to be removed, and also
the time index k has to be eliminated from future consideration
since no packet can be added there now. If we add a packet at
any time instant j € [k, ], it will again lead to the violation of
the token-bucket regulation at [, since the number of remaining
tokens in the bucket at time index [ will again be decremented
by 1. Hence, remove all the time indices from & to [ from fu-
ture consideration. No more packet can be added at these time
indices as well. The algorithm would end when all the time in-
dices are eliminated from future consideration. The algorithm
has been summarized in Algorithm 1.

Till now, we have assumed that the distortion cost function
is strictly convex in y;, Vj € [1, N] and the reduction in cost
on adding any packet to the schedule is positive. It is easy to
observe that the algorithm remains optimal even if the distortion
cost function is convex in y;, Vj € [1, N] and the reduction in
cost on adding any packet at any time instant is non-negative.

A. Example

We will illustrate the algorithm with an example. Con-
sider the same sequence that we have illustrated earlier, £ =
(3,9,5,1,10,11,6,2,3,8,9). Assume that R; 7, Vi €
[1,11], and Bpax = 2. As shown before, the vector £ can
be divided into sub-sequences: (i) (3), (ii) (9), (ii) (5, 1), (iv)
(10,11,6), (v) (2,3), and (vi) (8,9). Assume that the cost

2Here we have assumed that there is only one time instant at which the re-
duction in cost is the maximum. It is proved in the appendix (Lemma 4) that
if there are more than one time instants at which the reduction in cost obtained
is the maximum, then we can select any one of these time instants and add a
packet to the output at that time instant. This does not affect the operation of the
algorithm.
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Algorithm 1 Optimal offline algorithm

Inputs: % = xR = RN, B« (ad denotes the vector (ay,

Ap+1, **, Ag))-

Output: § = yV.

1: Divide X into two alternating sub-sequences such that in one
sub-sequence, z; < max(0, Rj — Bmax) and in the other,
x; > max(0, Rj — Bmax)-

2: Alloty; = x;, Vj € sub-sequence 1.

3: Consider x3+M_1, an instance of

i sub-sequence

2 of length M. Allot y; = min (zzgi,Ri),
Yirm-1 =  min (xitp—1, Ricm—1) and y;ﬂ/lﬂ
= max(0, R;flvl‘z — Bax)-

: Let AC;T™M~1 =,
: Compute AC; = C(zj,v;,5) — Clzj,y; + 1,7),
[¢,4 + M — 1] for which AC; # —1.

6: Suppose AC), = max{AC;™ 1}, If there are more than
one indices for which AC' is the maximum, then select the
minimum of these indices. Let this index be k.

7: Letyr = yx + 1.

8: Compute B{™™ ™! starting with B; = Bpax and using the
equation Bj+1 = min{Bmax, Bj + Rj - yj}.

9: If there is any [ € [k,i + M — 1] for which y; >
min (z;, B} + By), make y = yx — 1. Make AC} = —
for all such .

10: Gotostep 11if AC; = —1, Vj € [i,i+M—1]. Otherwise,
go to step 5.

11: Repeat the above algorithm from step 4 for all the instances

of sub-sequence 2.

o

Vj €

is the square error, i.e., C(z,y,i) = (z; — ;)% For all the
sub-sequences of type 1, y; = z;. Hence, y3 = 3, y3 = 5,
ys = 1, yg = 2, and yg = 3. Now consider the sub-sequence
xz = (10,11, 6) which is a sub-sequence of type 2. Initial allo-
cation gives yZ = (7,5,6) and ACT = (9,36,0). Among in-
dices 5, 6, and 7, AC is the maximum at the index 6. Hence, add
one packet to the output at time index 6, i.e., let yg = 6. Now re-
calculate the tokens remaining at the indices 5, 6, and 7, starting
with Bs = 2. This gives B = (2,2,2). Feasibility condi-
tions are still satisfied, i.e., y; < min(z;, Ry + By), VI € [6,7].
Therefore we recalculate ACZ and repeat the above procedure.
After 3 iterations, we get yZ = (8,8,6). The next iteration in-
creases the number of output packets at time index 6 by one and
we get yI = (8,9,6) and B = (2,1, —1). At this point, we
note that ys > Rg + Bg and y; = Rg + Bg. Hence reduce
the number of output packets at time index 6 by 1 and make
ACs = —1, i.e., no more packet will be added to the output at
time index 6. Continuing like this, we will have AC; = -1
and we get the optimal output schedule for this sub-sequence to
be yI = (8,8,6). The same algorithm is applied to all the other
sub-sequences of type 2 to get the resultant optimal schedule.

The above offline algorithm can be used only when we have
complete information about the number of packets that the
source sends and the times at which these packets are sent.
However, this algorithm is optimal and will be useful for pre-
recorded sources only. In the next section, we develop online
algorithms which can be very widely used, even if the scheduler
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Fig. 3. Model of the online scheduler.

does not have information about the packets that may arrive in
future. These online scheduling algorithms are evaluated based
on the optimal offtine scheduling algorithm.

IV. ONLINE SCHEDULING

In this section, we proceed by first formulating the model used
for online scheduling (Section IV-A). Based on the model, three
online algorithms are developed. The optimal offline algorithm
and the online algorithms are compared using simulations (Sec-
tion IV-C). The simulation model used is explained in Section
IV-B.

A. Online Scheduling Model

The model used to develop online algorithms is shown in
Fig. 3. The predictor predicts the number of packets that may ar-
rive in the next M — 1 time instants. For convenience, we have
assumed that the tokens arrive at fixed time intervals. Based
on the number of input packets at the current time instant and
the predicted number of input packets in the next M — 1 time
instants, the optimal offline scheduler is used to compute the
number of packets that should be output at the current time in-
stant. Instead of separate predictor and optimal offline sched-
uler, we could have also used a joint predictor-scheduler system
which minimizes the expected cost over M time instants. But
this model would have been highly dependent on the distortion
function used. Hence we have opted for the model shown in
Fig. 3.

The performance of the online scheduler depends on the type
of predictor used. We have analyzed the system using three
types of predictors: (i) LMMSE predictor, (ii) stationary pre-
dictor, and (iii) NLMS predictor.

A.1 LMMSE Predictor

We assume that the source is wide-sense stationary. The num-
ber of packets in the next M — 1 time instants is estimated as a
linear combination of the number of input packets at the current
time instant and the number of input packets in the previous K
time instants, i.e.,

X = CX, 3)
where X is an M —1 dimensional vector of the predicted number
of input packets in the next M — 1 time instants, X isa K + 1
dimensional vector of the number of input packets at the current
time instant and in the previous K time instants and C is an
(M —1) x (K + 1) matrix of coefficients. The coefficient matrix
C is chosen such that the mean square error between the actual
value and the predicted value is minimized over the whole input
sequence. We assume that the matrix C is already known.
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A.2 Stationary Predictor

We assume that the source is not very bursty. The predicted
number of input packets in the next M — 1 time instants is the
same as the number of input packets at the current time instant,
ie.,

iy1 =" =Tigm—2 = T 4

A.3 NLMS Predictor

This is an adaptive predictor. The predicted number of input
packets in the next M — 1 time instants is given by
X =CTX, (5)

where X is an M —1 dimensional vector of the predicted number
of input packets in the next M — 1 time instants, X isa K + 1
dimensional vector of the number of input packets at the current
time instant and in the previous K time instants and Cis a (K +
1) x (M — 1) matrix of coefficients. The coefficient matrix C

is updated as
EXT

CIC‘HLﬁ, ©®

where E is K + 1 dimensional error vector and y is a constant.
The initial value of C can be chosen randomly. The error de-
creases to zero with increasing number of iterations.

B. Simulation Model

In deriving the optimal offline scheduling algorithm, we have
assumed that the packets are output by the token-bucket regula-
tor instantaneously and the remaining packets are dropped since
they are useless if they arrive delayed. This assumption is valid
for multimedia streams. Hence in our simulations, we have used
video streams.

B.1 Video Stream Properties

In the simulations, pre-encoded MPEG-4 video streams from
[12] are used. In all the traces used, the number of video ob-
jects is one. The width of the display is 176 pels and the height
is 144 pels. Pel depth is set to 8 bits per pel. The video
object layer frame rate is 25 frames/sec. The GoP pattern is
IBBPBBPBBPBB. The frame inter-arrival times are 40 ms. We
consider the time between two GOPs, i.e., 480 ms as a basic time
unit. The tokens are refilled at equal time intervals of 480 ms.
Each frame is divided into packets of 48 bytes each. The number
48 is so chosen since it is equal to the size of payload in ATM
cells. It is assumed that the token-bucket regulator has no infor-
mation about the GoP other than its size in terms of number of
packets. More importantly, it does not know the rate-distortion
curve of the video source. Let z; denote the number of packets
that the source emits in the i-th GoP. Let i be the token-bucket
regulated output stream.

In this paper, we have used 10 video sequences. The size of
each video sequence is 5000 GoPs. The mean number of packets
in GoPs and its variance for each video sequence are shown in
Table 1. In simulations, all the elements of the vector B are
chosen to be equal. Each element of the vector R is chosen to
be approximately equal to the mean number of packets that the

source emits per GoP. The value of Bnax is chosen to be about
one-third of R. The exact values of R and B, chosen for each
video sequence are shown in Table 1. '

B.2 Distortion Cost Function

In most literatures concerning distortion in video, mean
square error (MSE) or peak signal to noise ratio (PSNR) which
is related to MSE are taken as accepted distortion cost functions.
We know that the exact distortion function for video is very dif-
ficult to determine and it depends on human perception. Instead
of MSE or PSNR, we have opted for proportional mean square
loss as the distortion cost function because:

1. We have assumed that the scheduler does not know the rate-
distortion function of the video source. Hence the cost
C(z;,v;,1) is taken to be independent of any time instant
other than t;. This in effect means that the scheduler assumes
that there is no error concealment at the receiver’s end. Sup-
pose y; = 0 for some i. If there is no error concealment,
what we receive on the screen is a blank. The distortion cost
associated with any blank should ideally be the same, irre-
spective of the value of the actual number of packets in that
GoP, z;. Hence, when y; = 0, the distortion function should
be independent of z; for any i. Proportional mean square
loss function obeys this property.

2. We know that normally in MPEG-4 coding, video is divided
into basic and enhancement layers. It has been observed
that whenever the basic layer has large size, the enhance-
ment layers tend to have large sizes. Now assume that there
are two enhancement layers. Intuitively one would feel that
if instead of dropping equal number of packets at all time
instants, the jitter in the distortion would be less if one en-
hancement layer is dropped at each time instant. This is in
accordance with the proportional mean square loss cost func-
tion definition.

Because of above reasons, we have decided to take the pro-
portional mean square loss as the distortion function in our sim-
ulations.

T

2
- Clasyyori) = (1 - y—) . )

We have assumed that the distortion cost function is the same
for all . We would like to emphasize that our formulation is
general and the simulation could be done with any distortion
cost function. The choice of proportional mean square loss as
the distortion cost function is only for illustrative purpose.

C. Results and Comparisons

The optimal offline scheduling algorithm and the online
scheduling algorithms have been simulated using the simulation
model described earlier. These are also compared with the de-
fault token bucket based rate control scheme which outputs the
packets according to the following schedule

y; = min(z;, R; + By), ®)

Bi+1 = min(Bmax, Rz + B’L _ Z/z)' (9)
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Table 1. Token-bucket parameters used for 10 video traces.

Video trace Mean Variance R Brax
packets (packets) | (packets)
per GoP

Aladdin 562.7 1.76 x 107 560 200

Alpin Ski 1.09 x 10% | 7.49 x 107 1000 300

Die Hard 885.7 1.97 x 10° 880 250

Jurassic Park 1 996.5 2.13 x 10° 1000 300

Mr. Bean 779.5 8.46 x 107 780 250

Robin Hood 1.13 x 10% | 1.51 x 10° 1200 400

Silence of the Lambs 777.6 3.30 x 10° 770 250

Soccer match 1.39 x 103 | 2.03 x 10° 1400 500

Star Trek 389.4 4.85 x 104 380 130

Star Wars 345.7 1.88 x 10% 350 120

We call this default non-optimal scheme as naive scheme. The
parameters used for different types of predictors are given be-
low.

C.1 LMMSE Predictor

The number of input packets that may arrive in the next M —1
time instants are to be predicted based on the number of input
packets at the current time instant and the number of input pack-
ets in the previous K time instants. From our simulations, we
have noted that the prediction error does not change much if we
increase K beyond 11. We have also noticed that the average
prediction error increases as M increases. Hence it is advisable
to use as small number of predicted samples as possible in the
online algorithm. But the optimal offline algorithm works the
best if the full input sequence is presented to it. Hence, as an
engineering compromise, we have selected M = 3.3 The simu-
lated results for this system for the 10 video traces are shown in
Table 2. We notice that the distortion cost in all the traces comes
to be about 10% more than the optimal offline cost.

C.2 Stationary Predictor

The number of input packets in the next 2 time instants is
assumed to be equal to the number of input packets at the current
time instant. Since the distortion cost function is assumed to be
the same for every time instant, the closed form solution for the
number of output packets at the current instant can be easily
derived. From the optimal offline scheduling algorithm, it can
be argued that if the number of tokens remaining in the bucket
at the current instant is B, then to minimize the distortion,

¥; = min (mi, [R+ ?])
The results for this scheduler are presented in Table 2. We ob-
serve that in all the video traces used, the distortion cost ob-
tained by using this type of predictor is almost the same as that
obtained using the LMMSE predictor. From (10), we find that
there is no need to predict the number of packets that may ar-
rive in the future. Hence this algorithm is computationally very
inexpensive and can be easily incorporated in online schedulers.

(10)

3Note that these values of parameters are not necessarily the best. In this pa-
per, it is only shown how prediction can be used in online scheduling algorithm.
Better predictors will definitely improve the online scheduler.

C.3 NLMS Predictor

Using the number of input packets at the current time instant
and the number of input packets in the previous 11 time instants,
the number of packets that may arrive in the next 2 time instants
are predicted. The prediction is based on the NLMS algorithm.
The value of y is chosen to be 1 since it was found to give good
stability to the system along with a rapid convergence rate. The
results obtained using this method are presented in Table 2. We
note that the NLMS predictor gives a much higher distortion
cost than both the LMMSE predictor and the stationary predic-
tor. This is because we have not optimized the value of u for
the best performance. The distortion cost will be reduced if an
optimum value of p is found and used.

From the comparisons, we can argue that the performance of
the optimal offline schedule is much better than that of the naive
scheme. Further, the online scheduler using stationary predic-
tor performs almost as well as the online scheduler using the
LMMSE predictor and better than the online scheduler using the
NLMS predictor and also it is computationally very inexpensive
as compared to the others. In fact, in many cases, the naive
scheme outperforms the online scheduler using the NLMS pre-
dictor. Hence, NLMS predictor is not a good predictor for our
model. For an online scheduler to be implementable in real-
time, it has to be computationally inexpensive. Another source
of computational complexity of the online scheduler is the op-
timal offline scheduler block. Hence in the next section, we
have developed a sub-optimal, heuristic offline scheduler which
is computationally inexpensive as compared to the optimal of-
fline scheduler. This can be used in conjunction with LMMSE
predictor to implement an online scheduler.

V. HEURISTIC OFFLINE AND ONLINE SCHEDULING

In this section, we replace the optimal offline scheduler in
Fig. 3 with a sub-optimal, heuristic offtine scheduler. This
heuristic offline scheduler is specific to the distortion cost func-
tion given in (7). We then compare how these online schedulers
which use LMMSE or NLMS predictors and heuristic offline
algorithm fare as compared to the online schedulers which use
optimal offline algorithm.
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Table 2. Results of scheduling algorithms on 10 video traces.

Video trace Naive Optimal Online algorithms using Heuristic Online algorithms using
algorithm offline optimal offline algorithm and offline heuristic offline algorithm and
algorithm | LMMSE | Stationary NLMS algorithm | LMMSE NLMS
predictor | predictor | predictor predictor predictor
Aladdin 0.0318 0.0293 0.0318 0.0318 0.0325 0.0306 0.0319 0.0324
Alpin Ski 0.0374 0.0357 0.0374 0.0370 0.0378 0.0363 0.0375 0.0378
Die Hard 0.0409 0.0393 0.0406 0.0407 0.0415 0.0401 0.0407 0.0414
Jurassic Park 1 0.0372 0.0360 0.0370 0.0370 0.0377 0.0366 0.0371 0.0377
Mr. Bean 0.0252 0.0234 0.0248 0.0249 0.0253 0.0245 0.0248 0.0257
Robin Hood 0.0166 0.0147 0.0162 0.0164 0.0171 0.0158 0.0163 0.0171
Silence of the Lambs 0.0556 0.0544 0.0553 0.0553 0.0560 0.0550 0.0545 0.0561
Soccer match 0.0216 0.0191 0.0210 0.0211 0.0220 0.0205 0.0211 0.0221
Star Trek 0.0433 0.0412 0.0429 0.0429 0.0438 0.0422 0.0427 0.0438
Star Wars 0.0264 0.0242 0.0261 0.0261 0.0268 0.0254 0.0261 0.0268

A. Heuristic Offline Scheduling

We assume that the scheduler has the complete information
about all the packets that the source sends. From the optimal
offline scheduling algorithm, we know that for optimality, y; =
z; if z; < min (z;, max(0, R; + B; — Bmax)), Vi € [1,N].
Now consider the case where z; > R; + B; — Byax. Suppose
the current time index is j and k is the next higher time index
at which z;, < max(0, Ry — Bax)- Suppose the number of
tokens remaining in the bucket at the current time instant is B;.
Under this condition, it is proved in the appendix that for the
distortion cost function given in (7), y; can be approximated by

y; = min (max(0, R; + B; — Bmax, f), %5, B; + R;), (11)
where

o [z S i - xy) 2B+ S R))

J k-1
Zi:j 7

We note that this is a closed form expression. Computation
of y; does not require any iterative algorithm. Hence the com-
putation of y; is quite straight-forward as compared to the op-
timal offline scheduling algorithm. For comparison, the results
obtained on the 10 video traces using the heuristic offline algo-
rithm are tabulated in Table 2. We note that the distortion costs
obtained using the heuristic offline algorithm is about 5% more
than that obtained using the optimal offline algorithm.

]. - (12)

B. Heuristic Online Scheduling

In this section, the heuristic offline algorithm developed
above is used in conjunction with LMMSE and NLMS predic-
tors to develop an online scheduler, which is computationally
inexepnsive. There is no need to use the heuristic offline algo-
rithm with the stationary predictor since the stationary predictor
in conjunction with the optimal offline algorithm gives a very
simple closed form expression for y; and hence, is quite easily
implementable in real-time.

B.1 LMMSE Predictor

LMMSE predictor is used in conjunction with the heuristic
offline scheduler to implement an online scheduler. Same pa-
rameters of the LMMSE predictors that were used before are

used here, i.e., M = 3 and K = 11. The distortion costs ob-
tained using this online scheduler for 10 video traces are tab-
ulated in Table 2. We note that in the worst case, the costs
obtained using this system of equations are greater than those
obtained using the LMMSE predictor and optimal offline sched-
uler by only 0.001. This amounts to a maximum of 6% increase
in cost for the video traces used in the simulations. But the
computational complexity reduced by this online scheduler is
tremendous. Hence this will be useful in implementing the on-
line scheduler where the processor speed and the algorithmic
complexity play a major role.

B.2 NLMS Predictor

NLMS predictor is used in conjunction with the heuristic of-
fline scheduler to implement an online scheduler. Same parame-
ters of the NLMS predictor that were used before are used here,
ie., M =3, K =11, and 1« = 1. The distortion costs obtained
using this online scheduler for 10 video traces are tabulated in
Table 2. We note that the distortion cost has not increased much
from that obtained using NLMS algorithm with optimal offline
scheduler, but the gain due to reduction in computational com-
plexity is tremendous. Hence using the heuristic offline sched-
uler instead of the optimal offline scheduler to implement an
online scheduler is very beneficial.

VI. GENERALIZED OPTIMAL OFFLINE
SCHEDULING ALGORITHM

In Section III, an optimal offline scheduling algorithm has
been developed. It is assumed that the packets are useless if
they are delayed by the token-bucket regulator. In this section,
we generalize the optimal offline algorithm by assuming that the
packets can be delayed by M time indices without any distortion
cost. For example. the input packets arriving at time #; can be
output by the token-bucket regulator at any time index from ¢;
to t;4 a7 in any order without any change in distortion cost.

As mentioned in Section II, £ = (t,--- ,tn) denotes the
times at which the packets arrive at the token-bucket regulator.
& = (x;,- - -, zy) denotes the number of packets that the source
sends at time t. A maximum delay of M time units is permitted.
Let 37 denote the number of packets, of the total z; input pack-
ets, that are output by the token-bucket regulator at time index
t;+j. Hence, j € [0, M]. Let §¥ = (y1,---,yn) denote the total
number of packets, of the ¥ = (z1,- - -,z ) input packets, that
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are output by the token-bucket regulator. Hence,

M .
Yi = ny
7=0

Lety = (¥}, -, Yy} ) denote the total number of packets that
are output by the token-bucket regulator at time . y, and y; are
not the same. y; may consist of some packets of y;_; also. More
specifically,

13)

(14)

Clearly, y/ ; = 0if i < j. The aim is to find the optimal
schedule {y/}, Vi € [1,N], ¥ € [0, M], such that the total
distortion cost is the minimum. Assumptions 1, 2, and 3 stated
in Section II still apply.

Since every packet can be delayed by a maximum of M time
indices, it is obvious that any conformant output schedule can
be rearranged such that no packet which arrives at time index ¢;
is output after a packet which arrives at time index ¢;_,. Hence,
if we know ¥ = (y1,---,yn), the output schedule {y!}, Vi €
[1,N], ¥j € [0, M], can be easily determined from the token-
bucket constraints, i.e., (1) and (2).

The generalized optimal offline scheduling algorithm and its
proof proceed along the lines of the optimal offline schedul-
ing algorithm with no delay. Since we have to determine § =
(y1,-,yn) only, we consider the number of output packets
against the number of input packets. We may note that in the
optimal offline scheduling algorithm with no delay, we had con-
sidered the number of output packets against the time index. In
this case, we do not divide the sequence of input packets into
sub-sequences but start with calculation of the marginal costs.
The rest of the algorithm remains the same with the exception

that
M

y; < min(z;, Bj + > Rjk).
k=0

s)

Since y; can be greater than B; + R;, B, can be negative.
This means that more tokens are utilized and hence, some pack-
ets have to be delayed. Once ¥ = (y1,---,yn) is known, the
output schedule {y7}, Vi € [1,N], Vj € [0, M], can be easily
calculated using (1) and (2) and the fact that no packet which ar-
rived at time index Z; is output after a packet that arrived at time
index t;41. Algorithm 2 summarizes the generalized optimal
offline scheduling algorithm.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have considered a scenario where a source
has been offered QoS guarantees subject to its adherence to the
token-bucket regulation. We argue that of all the packet sched-
ules that honour the imposed constraint, one that minimizes the
distortion cost should be chosen for transmission. Accordingly
we have developed an optimal scheduling algorithm which min-
imizes the distortion cost given the token-bucket parameters and
the number and arrival times of all the packets that the source
sends. This algorithm is optimal for any traffic for which the
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Algorithm 2 Generalized optimal offline algorithm

Inputs: % =xY,R=RNM B_ .. (ad denotes the vector

(@p, p+1, - " aq)).

Output: {y}, Vi € [1,N], Vj € [0, M].

1: Let ACY =0.

2: Compute AC; = C(z;,y;,7)—C(zj,y,+1,7),Vj € [1,N]

for which AC; # —1.

3: Suppose AC), = max{ACIT™ 1} If there are more than
one indices for which AC is the maximum, then select the
minimum of these indices. Let this index be k.

t Letyy =y + 1.

S: Compute Bll\I starting with B; = Bj,ax and using the equa-

tion Bj+1 = min{Bmax, B]‘ + Rj - y]‘}.

6: If there is any [ € [k,N] for which y, >

min (xl,Bl + Z,’lio Rl+k), make yr = yr — 1. Make

ACL = —1 for all such [.

7: Gotostep 8if AC; = —1, Vj € [i,5+ M — 1]. Otherwise,
go to step 2.

8: Using yllq, (1), (2), and the fact that no packet which ar-
rived at time index ¢; is output after a packet which arrived
at time index t;,1, determine the optimal output schedule

{47}, Vi € [1,N], ¥j € [0, M].

&

distortion cost function is convex in the output number of pack-
ets. We call this optimal offline algorithm. We have extended
the optimal offline scheduling algorithm to the online case and
have shown that the performance of the online scheduler does
not degrade significantly as compared to that of the optimal of-
fline scheduler. We have also shown how heuristic online sched-
ulers, which reduce the computational complexity, can be im-
plemented. Finally, an optimal offline algorithm has been de-
veloped in which the packets can be delayed within a certain
bound. This work can be extended in future along the following
lines:

1. An offline algorithm must be developed which is optimal for
any shape of the distortion cost function.

2. Better prediction of the packets that may arrive in future will
definitely lead to an improvement in the online scheduling
algorithm.

We are currently investigating the above problems.

APPENDIX

Lemma 1: A necessary condition for optimality is

Y = Tj if Zj S Vi
> if(Ej > Yj, (16)
where, 7; = max(0, Rj — Bmax).

Proof: We will prove the result by contradiction. Let ¢/ be
an optimal schedule such that y; = z; — k, k > 0 for some ! at
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which z; < ;. Distortion introduced in this schedule is

-1
Zc(xj’yﬁj)""c(xl,yl"l)
=1

N
+ Y Clx,95,9)-

j=l+1

a7

Consider the schedule & = (o4, - - -, o) such that

o = z; forj=1

= y; forj #1.
It is easy to verify that the schedule & is conformant. Distortion
introduced in this schedule is

-1

C(#,6) = Y Clzjv5 )+ Cla,z,1)
=1
’ N
+ Y Clzj,95,7)
Jj=l+1
C(Z,9) + C(z,21,1) — Clzy, ui, 1)
C(Z,9) — Clzy, 1 — k,1)
< C(Z,79), (19)

where (19) follows from assumption 2. This contradicts the op-
timality of the schedule 4. For the schedule & to be conformant,
y; < z;. Hence y; can not be increased further and as a result,
y; = ;. This proves the first part of the lemma.

To prove the second part of the lemma, assume that ¢ is an
optimal schedule such that y; = v, — k, & > 0 for some ! at
which z; > ~,;. Distortion introduced in this schedule is

-1

CE,9) = Y, Cz;,y5,0) + Cla,u,l)

j=1
N
+ Y Clz;,95,7). 20)
j=Il+1
Consider the schedule &' such that
o; = v forj=1
= y; forj #L 2D

It is easy to verify that the schedule & is conformant. Distortion
introduced in this schedule is

-1

C(@,6) = Y C(zjv5,5) + Cla, 1)
j=1
N
j=l+1

C(f7 g) + C(Zlafylal) - C(zlaylal)
C(f’m + C(xh’yl’l) - C(wl,% - k)l)

< C(&,9), (22)

(18)

where (22) follows from assumption 2. This contradicts the op-
timality of the schedule ¥. The distortion will decrease further if
yy 1s increased beyond -y; with the constraint that the new sched-
ule 77 is conformant to the token-bucket regulation. This proves
the second part of the lemma. Hence Lemma 1 is proved.
a
Lemma 2: For a particular [, suppose x; < -;. The schedule
i/ is optimal only if

Y1 = x—q ifz1 <Ry
> Ry ifz1 >R, (23)
and
Y1 = Ty Wz S Ry
> Ry ifzp > R 24

" Proof: From Lemma 1, we note that 5, = z;. Consider
an optimal schedule ¢ such that y;_1 = ;1 — k, k > 0, given
that z; < < and z;_; < R;_;. Distortion introduced in this
schedule is

1-2
C(fvg‘) = C(xj)y]m}) +C($l—1,yl—1,l— 1)
j=1
N
+ > Claj,95,79)- (25)
j=l+1
Consider the schedule & such that
o; = xzjforj=101~1
= y; forj #1—-1 (26)

It can be easily verified that the schedule is conformant. Distor-
tion introduced in this schedule is

-2
C("E,Ef) - Zc(xjvijj)+C($l—17$l—17l_1)
j=1
N
+ Z Clz;,y;,7)
farnd)

= C(&,9)+C(zi-1, -1, - 1)
—Czi—1,y0-1,1 — 1)

= C{Z,9) - Clzi-1,21-1 — k,1 — 1)

< C(Z,9),

where (27) follows from assumption 2. This contradicts the op-
timality of the schedule 7 and proves the first part of the lemma.
Proceeding like this for every possibility given in the lemma, we
can prove the lemma.

27

O

Lemma 3: The conformant schedule i is optimal only if

there does not exist a conformant schedule & which can be ob-
tained from ¥ by adding a packet at any time instant.

Proof: Lemma 3 is obvious since if & were obtained from

7 by adding a packet, the distortion cost of & would be less than

that of . Hence % is no longer optimal. Therefore the lemma is

proved by contradiction. ]
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Lemma 4: If there are more than one time indices at which
the reduction in the distortion cost is the maximum, the algo-
rithm remains optimal even if the packet is added to any of these
time indices.

Proof: The algorithm will not be optimal if the eventual
distortion cost obtained by adding a packet at any of these time
indices is different from others. Consider two time indices m
and 7 at which the reduction in the distortion cost is the maxi-
mum. Consider two events:

(i) Adding a packet at time index m.
(i) Adding a packet at time index n.

The algorithm will not be optimal only if event (i) followed
by event (ii) is possible, but event (ii) followed by event (i) is
not possible, or vice versa. Without loss of generality, assume
that event (i) followed by event (ii) is possible and event (ii)
followed by event (i) is not possible. This implies that a packet
can be added at time index n. Now if one more packet is added
at time index m, it leads to the violation of the token-bucket
regulation at some time index [. If the first packet had been
added at time index m and the second at time index 7, it would
have again led to the violation of the token-bucket regulation,
since the new schedules obtained by adding the packets are the
same. The order in which the packets are added does not matter.
This proves the lemma using contradiction. Hence the algorithm
is optimal if the packet is added to any of the time indices at
which the reduction in the distortion cost is the maximum. O

Approximation for the Heuristic Offline Scheduling

Suppose the current time index is j and z; < max(0,R; +
Bj; — Bmax), wWhere B; is the number of tokens remaining in
the bucket at time index 7. From Lemma 1, we know that for
optimality, y; = z;. Now consider z; > max(0, R; + B; —
Bunax)- Suppose k is the next higher time index at which x; <
max(0, Ry — Bmax)- Hence from Lemma 1, we get y, = xp
for optimality. Now we have to find the output schedule from
the time index j to time index k — 1.

From the functioning of the optimal offline scheduler, we no-
tice that it tries to equalize C(z;,y;,7) — C(z;,y; + 1,7), V7.
If the packets are considered fluid, then this simplifies to:

aC(x]7yJa])

28
Jy; @9

= constant, V j.

The maximum number of packets that can be transmitted be-
tween time indices j and k — 1is B; + Zf:_jl R;. Hence,

k—1 k-1
Y yi<Bj+> R
i=j

i=j

(29)

Assume that the maximum number of packets are able to pass
through the token-bucket regulator. Hence,

k—1 k—1
S w=B;+> R
i=jJ i=j

For C(z;,y;5,7) = (1 — %;—)2 and using (28) and (30), we get

(30)

k—1 k—1
>y Tz —mj) +x(By + 202, Ri)

=7
k—1 o
Zi:j 5

Y; = Iy (31)

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 1, MARCH 2005

But y; has to be an integer. Hence,

B Yz wilw — z5) + (B + L2 R)
Y = "x]' ZkVI 2 -l

i=j Li
= f_

From Lemma 1, we know that yy; > max(0, R;+B; —Bax)-
Hence,

(32)

Yy = max(O, Rj + Bj — Brax, f) (33)
But, y; < min(z;, B; + R;). Hence,
Y; =m1n(ma’x(0?Rj+B] _Bmax7f)a1‘j7B]+RJ) (34)

This is the heuristic offline scheduler.
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