54

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 7, NO. 1, MARCH 2005

An Efficient ATM Traffic Generator for the Real-Time
Production of a Large Class of Complex Traffic Profiles

Dimitrios Loukatos, Lambros Sarakis, Kimon Kontovasilis, and Nikolas Mitrou

Abstract: This paper presents an advanced architecture for a traf-
fic generator capable of producing ATM traffic streams according
to fully general semi-Markovian stochastic models. The architec-
ture employs a basic traffic generator platform and enhances it by
adding facilities for ““driving” the cell generation process through
high-level specifications. Several kinds of optimization are em-
ployed for enhancing the software’s speed to match the hardware’s
potential and for ensuring that traffic streams corresponding to
models with a wide range of parameters can be generated effi-
ciently and reliably. The proposed traffic generation procedure is
highly modular. Thus, although this paper deals with ATM traffic,
the main elements of the architecture can be used equally well for
generating traffic loads on other networking technologies, IP-based
networks being a notable example.

Index Terms: ATM, network tools, traffic generation, traffic mod-
eling and simulation.

I. INTRODUCTION

In the past few years, there has been an increasing interest in
network traffic generators, particularly those with an ability of
producing the complex and bursty traffic streams loading mod-
ern broadband networks. And for a good reason: Indeed, traffic
generation tools, in conjunction with analysis tools, can assist
in tuning networks, so as to provide and guarantee improved
quality of service (QoS) at reduced cost levels. More gener-
ally, traffic generators can be an asset towards an efficient and
cost effective network design, configuration, and control. A key
feature of these devices is their ability to realistically simulate
in real time a wide range of payload conditions, which can be
directly applied to actual networks for the purpose of studying
their behavior. In most cases, this is easier, faster, cheaper, and
more controllable than using real traffic sources.

Due to their importance, various traffic generators have been
presented, some of them being commercial equipment [1]-{3],
others being the outcome of research work [4], [5]. However,
most of the relevant technology currently available is concerned
with the generation of traffic profiles through a specification of
low level characteristics. In ATM, for example, most generators
support traffic profiles specified only at the cell level. Such an
arrangement is not satisfactory, because the important character-
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istics capturing the burstiness of traffic and having an impact on
the network’s operation are best described by aggregate statisti-
cal quantities at a higher level.

As a contribution towards improving this situation, the pa-
per presents an architecture of a traffic generator that is capable
of producing a broad class of bursty ATM traffic profiles, each
specified through a high level model. More specifically, the pa-
per employs an efficient ATM traffic generator platform [4], [5]
and enhances it by adding facilities for “driving” the cell gener-
ation process according to the model specifications. In the high-
level framework, each traffic stream is represented as a semi-
Markovian model featuring an arbitrary (finite) number of states
(each associated with a data rate), Markovian transitions from
state to state, and state holding times possessing arbitrary distri-
bution functions.

This class of traffic profiles is quite general and can accurately
represent a wide range of bursty network traffic sources origi-
nating from various applications. Plain Markov-modulated rate
processes (featuring exponentially distributed state sojourns)
have been successfully employed for representing voice [6], [7],
video [8]-[11], and data [12], [13] traffic. The additional gen-
erality offered by the semi-Markovian models, namely the abil-
ity of specifying general probability distribution functions for
the state durations, permits accurate modeling of traffic featur-
ing heavy-tailed bursts [14] or being subjected to shaping (e.g.,
leaky bucket based regulation) or throttle control.

It should be noted that the proposed traffic generation pro-
cedure is highly modular. Thus, although the paper deals with
ATM traffic, the main elements of the architecture can be used
equally well for generating traffic loads on other networking
technologies, IP-based networks being a notable example.

The rest of the paper is structured as follows: Section II iden-
tifies the basic components of the generator and discusses briefly
the low-level operations that govern the actual emission of cells
by the hardware and are used as the foundation for the high-
level software constructs. Section III presents the traffic spec-
ification in terms of semi-Markovian models and describes the
high-level algorithms that drive the cell generation engine. This
section discusses several kinds of optimization that have been
employed for enhancing the software’s speed to match the hard-
ware’s potential and for ensuring that traffic streams correspond-
ingsto models with a wide range of parameters can be generated
efficiently and reliably. Measurements on the overall efficiency
of the tool are discussed in Section IV, while Section V reports
on results from using a prototype of the traffic generator in ex-
periments. Finally, Section VI provides some concluding re-
marks.
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II. ARCHITECTURE OF THE TRAFFIC GENERATION
ENGINE

The traffic generator (TG') consists of hardware (a PC card)
and software. The hardware is a compound PC board, made up
from a ‘motherboard’ that hosts the PC bus interface and the cell
stream generation functionality and a ‘daughterboard’ that acts
as a NIC, undertaking the serial ATM interface to the physical
layer. The two sub-boards are connected via a UTOPIA Level 1
connector. The ‘motherboard’ {5] allows the simultaneous gen-
eration of multiple paralle} ATM streams, each of which may
follow a distinct traffic profile. Cells from these parallel streams
are multiplexed over the daughterboard and subsequently output
over the physical interface. The prototype hardware has been
implemented for OC-3 ATM links; a modified version for OC-
12 also exists. The hardware configuration supports up to 16
parallel streams and can sustain production of cells at a rate up
to the physical interface’s speed.

As it will be discussed fully in the following, the hardware is
driven by simple software-provided data, called elementary traf-
fic events. To some extent, these act on the TG hardware as ma-
chine instructions do on a computer processor. Thus, achieve-
ment of the hardware’s potential for cell generation at full rate
is directly dependent on the software’s ability to provide the ap-
propriate elementary traffic events at the right pace.

In particular, two software modules are relevant to the gen-
erator: The traffic profiles creator (TPC) and the TG program-
mer (TGP). The TPC is an off-line application that provides a
user interface for defining traffic models and storing appropri-
ate parameters of these models to computer files for later usage.
The TGP operates on-line and undertakes the tasks of associat-
ing each of the hardware’s traffic stream units with previously
defined traffic models (by reading files generated by the TPC),
sampling high-level traffic events according to the associated
traffic models, converting these samples to low-level elementary
traffic events, and using the latter for driving the cell generation
hardware. The TGP is also used for activating/deactivating indi-
vidual traffic stream units and for monitoring the cell generation
process corresponding to each of them, by receiving from the
TG hardware statistics about the generated cells.

Clearly, the task of making the TG capable of producing cell
streams compliant with complex semi-Markovian traffic models
involves appropriate design and coding of both of the TPC and
TGP software modules. Addressing TPC is easier because, be-
sides involving only high-level constructs, it runs as an off-line
process without hard performance requirements associated with
it. TGP is more complex because it must output the appropriate
elementary traffic events suitably fast, if a performance bottle-
neck is to be avoided. The algorithms undertaking high-level
traffic sampling and interfacing to the low-level traffic events
representation, as well as the efficiency of these algorithms,
are the subject of the next section. Before embarking on that,
the structure of elementary traffic events understood by the TG
hardware is reviewed in the following.

As already mentioned, the TG hardware regards each of the
traffic streams produced in parallel as a plain cell sequence
whose pattern is determined by a succession of elementary traf-

LFor a list of all main acronyms used in this paper see Appendix-D.
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Fig. 1. Top: The structure of elementary traffic events. Bottom: NC/ID,
or SD representations in the event storage memory.

fic events, each corresponding to either an active or an idle pe-
riod. An active period is a burst, characterized by its size NC
(signifying the number of cells in the burst) and the inter-cell
distance ID. Clearly, an active period lasts for NC(ID + 1)
ATM slots. An idle period denotes a time-interval during which
no cells are produced. It is characterized by its duration S'D (for
“silence duration”) in ATM slots. The top part of Fig. 1 sum-
marizes the relation of each kind of traffic event to its defining
parameters.

It follows that an elementary traffic event should be repre-
sented as either a (NC, ID) pair or an SD value. However,
to simplify the hardware, the event is always passed as a word
of length 32 bits, containing the value of a (NC, I D) pair (and
called elementary traffic event pair—ETEP—in the sequel), as
in the layout at the bottom of Fig. 1. Whenever the most sig-
nificant bit (MSB) is set, the word is taken to correspond to an
active period and the hardware uses the values of the NC' and
1D parameters to generate the cells as displayed in Fig. 1. If the
MSB is unset, then the word corresponds to an idle period and
the hardware operates as in the case of an active period, except
for suppressing the generation of cells. This behavior has the ef-
fect of introducing an idle period of length SD = NC(ID+1).
In other words, in case of an idle period the TGP software un-
dertakes the task of constructing appropriate values for the NC
and ID parameters, so as to match the user-supplied value of
SD.

In relation to the range of values that can be represented in
an ETEP note that, according to Fig. 1, NC is a non-zero 16-
bit field, ranging in the interval [1,2® — 1]; similarly, 1D is
a 15-bit field, ranging in [0,2'°> — 1]. Thus, due to the way
silence durations are represented, S takes values in the inter-
val [1,231 — 21%], with increments larger than one in the up-
permost part of this range. This feature allows for an extensive
range of SD-values, while also maintaining a sufficiently fine
degree of granularity.

We now turn into the mechanism through which ETEPs are
fed to the hardware: Each stream unit of the hardware is
assigned an on-board memory bank of size 1024 x 32 bits,
called event storage memory (ESM), which is used for buffer-
ing ETEPs (a 32-bit word each) relevant to the stream. As
the hardware produces cells, the ETEPs contained in memory
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are gradually consumed and must be replenished. Replenish-
ment of the ESM for each stream is interrupt-triggered and oc-
curs (in parallel for all active streams, using separate and asyn-
chronous interrupts) in chunks equal to half the memory size,
viz., HM S = 512 words, through a fast DMA-based PC inter-
face that provides high rate data transfer from the host computer
to the TG board. In this arrangement, once half the ESM con-
tents have been consumed by the hardware, the driver probes
through an interrupt the TGP software to provide a new set of
HM S ETEPs while the board continues to generate cells from
the remaining H M .S words still in the ESM (see Fig. 2). These
remaining ETEPs will be processed in time equal to

HMS
T= Y NC(ID;+1)

i=1

(measured in ATM slots). (1)

Therefore, in order to avoid underflow of the ESM and main-
tain normal operation, the TGP software must prepare the new
HMS words (according to the results of the high-level sam-
pling) and transfer them to the board within time 7. Conse-
quently, the minimum possible value of T' (depending on the
high-level source parameters) is a critical time constant of the
system.

It follows that the main challenge in the design of TGP is to
ensure that ETEPs are generated fast enough to replenish the
ESM for each active stream within the time determined by (1).
Towards this end, the software has been structured in a such a
way that most of the complex calculations are performed at a
preprocessing stage, while the operations in real-time mode are
kept as light as possible. The structure of TGP and the various
algorithms that it employs are discussed in detail in the follow-
ing section.

III. TRAFFIC GENERATION THROUGH
HIGH-LEVEL MODELS

A. The Structure of Semi-Markov Traffic Models

As already mentioned, the traffic generator adopts a high-
level traffic specification in terms of (time invariant) semi-
Markovian models (see, e.g., [15]). According to this frame-
work, each traffic model is characterized by a set of N states.
During a sojourn at some state %, a constant, state-dependent
data rate r; is maintained. (The modeling framework assumes
a “fluid-flow” approach, according to which more complex cell-
level rate fluctuations within each state can be ignored. This ap-
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proach is entirely adequate for representing the important burst-
level phenomena, while at the same time avoiding excessive
low-level complexity.) Transitions among states occur accord-
ing to a discrete irreducible Markov chain with a transition prob-
ability matrix P = [p;;]. The sojourns at a state ¢ are indepen-
dent and identically distributed random variables, of a general
probability distribution function (PDF) F;(-). The well-known
MMRP traffic models (see, e.g., [13]), where all sojourn times
are exponentially distributed, are an important special case of
semi-Markovian models.

A.l1 A Special Case:
Sources

Superposition of Exponential On/off

Many real-world traffic sources can be modeled as the su-
perposition of a number of exponential on/off sources (see,
e.g., [10] and [11]}). Furthermore, many QoS theory fundamen-
tals are based on traffic load of this form. Consequently, it is im-
portant to equip the traffic generator with the ability to generate
such loads efficiently. However, it is quite expensive to allocate
one stream module of the traffic generation hardware to a sin-
gle on/off source. That would unnecessarily limit the maximum
number of on/off sources to 16. By exploiting the generator’s
potential of admitting general specifications of semi-Markovian
models, it is possible to assign the whole homogeneous super-
position of a number N of exponential on/off traffic streams to
a single stream module of the TG board.

Indeed, the said superposition is equivalent [12] to a semi-
Markovian model comprising /V + 1 states, each with exponen-
tially distributed sojourn times. Given the peak rate r, and the
mean on and off periods, 7 and o, respectively, of a single on/off
source, the parameters of the model describing the superposition
are given as follows:

e Stateratesr; = ir,for¢ =0,---, N.

e Mean sojourn times y; = [i/7 + (N —i)/o]7}, for i =
0,---,N; due to exponentiality, these mean values com-
pletely determine the sojourn PDFs, as Fy(z) = 1 — e~%/7,

o Transition probability matrix P = [p;;|, such that p; ;1; =
vi(N — i)/a, for indices ¢ = 0,---,N — 1, and p; ;1 =
~ii/T, for i = 1,---, N, all other transition probabilities
being zero.

The traffic profiles creator (TPC) software, which provides
the user interface for defining traffic models, makes the task of
specifying a superposition of on/off sources particularly easy,
because it requires user-input for just the parameters of a single
on/off source and the number of sources participating in the su-
perposition and undertakes itself the construction of the global
model. Appendix-C provides further details on the output pro-
duced by TPC.

B. Top Level Architecture of the TGP Software

From a high level view, traffic generation corresponding to a
semi-Markovian model consists of a sequence of events (high
level traffic events—HLTEs). Each HLTE signifies the emission
of cells at a constant rate r;, depending on the currently occupied
state 4, for a duration chosen through sampling the respective
PDF governing the sojourns at this state.
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With the notion of an HLTE at hand, the task of semi-
Markovian traffic generation requires an algorithm to decide
on the next state to be occupied by the model (next state deci-
sion algorithm—-NSDA) and an algorithm to sample the sojourn
time that will be spent at the chosen state (sojourn time deci-
sion algorithm—STDA). Furthermore, the nature of ATM and
the structure of the traffic generation hardware suggest the need
for two more mechanisms: One to convert data-rates, and the
durations for which these rates are sustained, to ETEPs, i.e.,
(ID, NC) pairs (rate to pairs conversion algorithm—RPCA)
and another to encapsulate the high-level traffic event sequence
into units of size HM S (high level traffic events encapsulation
algorithm—TEEA).

The relation between these building blocks (commented indi-
vidually in Sections ITII-C-III-F) is depicted in Fig. 3.

C. The Next State Decision Algorithm (NSDA)

Given as input an integer value expressing the state visited
last time, the NSDA determines the state to be visited next. For
this purpose, NSDA makes use of the transition probabilities
matrix P = [p;;], as follows: During an initialization step, per-
formed once before the actual traffic generation process, NSDA
computes the aggregate transition probabilities matrix 4 =
[ai;], where a;; = Y7 _opi, foralli,j =0,---, N — 1. Dur-
ing normal operation, given the state ¢ currently occupied, the
next state is decided upon by drawing a random number s in the
interval [0,1) and determining the smallest index j, such that
the quantity a;; exceeds s.

Since the transition probability matrix P does not change over
time, the partial probability sums are also invariant and having
them ready into the elements of A reduces the time needed to
determine the next state.

D. The Sojourn Time Decision Algorithm (STDA)

STDA consists of two modules: STDA_1, an initialization
step performed once in startup, and STDA_2, which is executed
repeatedly during the generation process. The preprocessing
stage of STDA _1 undertakes the conversion of the sojourn PDFs
into a form that allows for the efficient selection of actual so-
journ samples by STDA 2 during on-line operation. Introduc-
tion of the preprocessing makes sense because the PDFs do not
change over time.

More specifically, STDA_1 reads data that determine the
PDFs governing the sojourn times at all states of the model.
Then, for each state the algorithm computes values of the re-

spective PDF? and creates an array of size M that contains
inverse distribution function values (i.e., sojourn time values),
which correspond to equally spaced PDF values in the range
from O to (M — 1)/M. The dimension M (common to the ar-
rays of all states) is chosen large enough to ensure a sufficiently
dense representation of the PDF, while also avoiding excessive
storage requirements.

Once the arrays have been produced, STDA_1 exercises the
RPCA algorithm upon each element of each array, taking as in-
put the sojourn time of this element and the data rate associated
with the corresponding state, and transforms this input into a
collection of ETEPs. This is done in a way explained in the next
subsection and further detailed in Appendix-A.

During the cell generation process, the STDA 2 performs (in
a highly efficient manner) a much simpler task, namely that of
drawing a random index into the array corresponding to the state
picked by the NSDA. The low-level traffic event information in
the chosen element is then fed into TEEA, which has the re-
sponsibility of generating HM S ETEPs for download to the
hardware. TEEA is described in Section III-F.

E. The Rate to Pairs Conversion Algorithm (RPCA)

This algorithm, used during the preprocessing stage only,
tackles the task of converting (rate, duration) pairs into low-
level ETEPs of the form (NC, ID). (As explained in Section II,
even plain silences, i.e., cases where the data rate is null, are
converted to this form.) However, it is not always possible to
convert an arbitrary (rate, duration) specification into a single
ETEP. Indeed, for any given choice of the I D parameter, the
cell-generation rate is equal to R/(7 D+ 1), where R is the max-
imum achievable rate (155.52 Mb/s for the STM-1 link in our
implemented prototype). Since /D assumes integral values, the
set of directly achievable rates is also discrete, with a granularity
that is coarser in the upper range of rate values (corresponding
to lower I D values) and finer in the lower range.

For generating at any other rate value, not directly contained
in the abovementioned discrete set, an approximation must be
made. The generator follows the approach of attaining the tar-
getrate r; (in an average sense, over the sojourn in the respective
state 7) through a rate variation process, which emits NC| cells
at rate r; followed by NC}, cells at another rate rp,. The rate rp,
is chosen equal to the lowest actually achievable rate (i.e., cor-
responding to an integral value of D) above r;, while 7; is the
highest actually achievable rate below r;. The weights NC; and
NC), are determined so as to approximate the desired average
rate as closely as possible. Furthermore, the weights obey the
relation NC; + NC}p, = NC, the latter quantity being equal to
the total number of cells for the HLTE in question, determined
as the total data to be generated (equal to rate x duration),
rounded to an integral number of cells. (The cell size used for
the conversion of data units includes the physical layer over-
head if the rate r; also refers to the physical layer; otherwise
both quantities refer to the ATM layer and a cell-size equal to
53 bytes is used.)

2The computation involves calculations based, either on a closed form formula
(when the PDF belongs to a standard built-in set) or on linear interpolation over
tabulated PDF values supplied in a file from the user. The second method allows
for the specification of arbitrary PDFs.
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One final complication is that the resulting values of NC|
and/or NC';, may be greater than the maximum value that can
be represented by an ETEP (i.e., greater than NCp, = 216 —
1). In this case, instead of using just two ETEPs, the HLTE is
broken down to a number of rate variation cycles, each of the
form discussed previously. The decomposition in cycles may
also be useful even when NCj;, < NChy, in order to manage
the rate fluctuations better, thus approximating the target rate
with higher fidelity. Further details on the RPCA mechanisms
may be found in Appendix-A.

F. The Traffic Events Encapsulation Algorithm (TEEA)

As already discussed in previous occasions, every HLTE is
mapped to a number of ETEPs. TEEA, triggered by a hardware
interrupt, undertakes the task of encapsulating these data into
units of length HM S and downloading them to the hardware.
In doing so, TEEA also acts as the caller of NSDA and STDA_2,
for obtaining “fresh” samples, when these are required.’> More
specifically, when triggered by a data request interrupt, TEEA
executes as follows:

Restore unprocessed part of current HLTE;
While (data unit of H M S is not filled)

If (the HLTE has run out of ETEPs) then

Obtain a new HLTE by applying NSDA and STDA _2;

End if

Add next ETEP of the HLTE into that data unit;
End while
Download data unit of HM S via the driver to the TG hardware;
Save unprocessed part of current HLTE;

The mechanics of the TEEA are further illustrated in Fig. 4,
the upper part of which displays the sequence of HLTEs (each
containing a number of ETEPs) picked by NSDA and STDA_2.
The length of each HLTE in the figure denotes the number of
corresponding ETEPs while different shades/colors correspond
to different high-level states, and thus rates. The lower part of
Fig. 4 illustrates the encapsulation of the ETEPs into HM S
units (indicated by the surrounding frames). As it can be ob-
served, the ETEPs of a single HLTE may be distributed in more
than one successive chunks of length HM S.

3 As explained in Section III-D, RPCA processing is performed only during
the preprocessing stage, in the context of STDA_1 operations.
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G. Optimization Issues

As mentioned in previous occasions, TGP must be capable
of producing the ETEPs driving the cell generation hardware
within Tp,;,, the minimum value of the critical time in (1) at the
end of Section II. To ensure that this constraint is respected,
many time-consuming conversion operations are executed off-
line, during a preprocessing stage. Such operations include
RPCA in its entirety and the most complex part of STDA, the
STDA_1. Thus, only the simple operations of STDA_2, NSDA,
and TEEA are invoked on-line. With these arrangements, most
semi-Markovian models, even those with stringent parameter
values, can be generated within a time-window of length Tiyin.
The range of achievable model parameters in the implemented
prototype is summarized in Appendix-B.

Moreover, there is special provision for particularly “nasty”
models (i.e., those containing sojourn times of extremely small
duration-less than 0.1 ms) that may give rise to very small values
of Tiin. In order to maintain the integrity of the traffic genera-
tion process in such extreme circumstances, an alternative mode
of operation is used. In that mode, NSDA and STDA _2 remain
as previously described, but are invoked in a “batch fashion”
during the preprocessing stage, so as to produce a large num-
ber, namely K x HMS, of ETEPs, where K is a large power
of 2. This ‘pool’ of data is stored in the host computer’s mem-
ory, from where TEEA (which functions differently from the
description given in Section III-F) ‘pumps’ H M .S neighboring
ETEPs, at any time an interrupt is being serviced. The start of
this block of neighboring elementary pairs is selected randomly
in the interval [0, K x HMS — 1]. Although this alternative
mode of operation imposes some distortion on the random as-
pects of the model, the result is quite acceptable, as long as K
is large enough and the number of states is not excessive.

IV. MEASUREMENT OF THE SOFTWARE’S
EFFICIENCY

In order to validate the efficiency of the TGP software, ex-
periments were performed. An old and slow PC (featuring a
Pentium I processor at 166 MHz and 64 MB of RAM) was in-
tentionally used as host of the traffic generation tool, aiming at
the maximization of possible bottleneck phenomena during traf-
fic generation. Performance of the TG software was captured by
a monitoring tool logging the CPU utilization.

The values for the traffic model parameters were appropri-
ately selected to reflect demanding cases of traffic generation.
The most stringent such cases occur when the total cell rate
is close to the link rate and when the states of each semi-
Markovian model feature very small mean sojourn times (the
particular shape of the sojourn PDF is less critical). Both these
factors translate into fast consumption of ETEPs by the hard-
ware, thus to more frequent interrupts for ESM replenishment.
Indeed, the higher the state rates, the smaller the 7D values in
the corresponding ETEPs become (see (4) in Appendix-A), re-
ducing the time span over which the ETEP is active (viz., (7) in
AppendixVI-A). Similarly, smaller mean sojourn times call for
more frequent state transitions (thus calls to NSDA) and each of
them requires a fresh set of ETEPs (obtained through STDA_2).
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We now present results for a particular experiment address-
ing traffic generation according to stringent model parameters.
In this experiment, a semi-Markovian model with 10 states was
used. Traffic rates and mean sojourn times were fixed at 9 Mbps
and 1 ms (a very low value), respectively, for all states. All
16 traffic stream units of the hardware were activated to pro-
duce traffic according to this model, for a total traffic rate of
144 Mbps. It is mentioned that, since all state-rates are equal,
the model is equivalent to a trivial constant-bit-rate source. Al-
though the reduced model would have been employed in traffic
generation practice the more complex semi-Markovian repre-
sentation was deliberately employed in the experiment, to en-
force a complex multi-state setting and equally stringent pa-
rameters (and the consequent high computational requirements)
over all states.

Fig. 5 displays traces of the CPU utilization (as captured by
the performance monitoring utility) at the host computer, for 100
s of traffic generation. The left trace corresponds to a run dur-
ing which traffic generation proceeds according to the normal
mode, i.e., when STDA_2, NSDA, and TEEA are invoked on-
line. The average CPU utilization is 1.4% and the peaks do not
exceed 4% (the two peaks around 10% are unrelated to the main
traffic generation functionality and will be discussed later). The
right trace in the figure corresponds to a run of the generator
in the alternative mode intended for particularly ‘nasty’ mod-
els, as explained in Section [II-G. The average CPU utilization
is now 1.1% and the peaks are around 3%. The drop of about
25% in the processing load (reflected in both the mean and peak
utilization values) is due to the fact that in the alternative mode
the high-level STDA_2 and NSDA operations are omitted (be-
ing invoked in “batch” fashion during the preprocessing stage,
instead).

The trace comparison just mentioned also indicates that about
25% of TGPs processing is devoted to STDA_2 and NSDA op-
erations, while the remaining 75% goes to the processing of in-
terrupts and the downloading of ETEPs to the hardware through
TEEA. This is further confirmed by observing the trace marked
by the ‘dark’ line in both subfigures (almost overlapping with
the horizontal axis and the large peaks around 10%), which cor-
responds to the processing load when interrupts are not pro-
cessed and the initial batch of HM S traffic events are wrapped
around by the TG hardware. In this case even the TEEA pro-
cessing is nullified and the CPU utilization drops to 0.01%.

The peaks around 10% are still captured in the ‘dark lined’
trace, however, and this indicates that they are unrelated to the
main traffic generation process. Indeed, these peaks correspond
to the computations required for the periodic refresh (approxi-
mately every 46 s) of graphical representations, employed by the

user interface in the TG software for illustrating characteristics
of the generated traffic. This operation is expensive on the host
computer used in the experiment, which, as already mentioned,
was old, slow, and with limited graphics support. It would have
required a much smaller proportion of the CPU’s power in a
modern system. In any case, this load does not scale-up as the
model’s parameters become more stringent. Furthermore, this
monitoring capability can be deactivated, leaving more CPU re-
sources free for the fundamentals of traffic generation.

In concluding, even with a model featuring sojourn times as
low as those in the experiment, there is room for increasing the
rates (and the processing load required, which would grow pro-
portionally) by at least a factor of 10. (This assumes a host sys-
tem dedicated to traffic generation and OS functions, and that
the graphical monitoring facility is retained). Taking into ac-
count that modern PCs are faster than the one used by more
than an order of magnitude, it follows that TGP is capable of
supporting full rate traffic generation at a level of at least OC-
192, provided that upgraded TG hardware becomes available at
these rates.

V. USAGE OF THE TRAFFIC GENERATOR IN
EXPERIMENTS

Besides the performance efficiency measurements discussed
in the previous section, the traffic generator was subjected to ex-
tensive testing, during which it demonstrated remarkably good
behavior in accurately implementing complex user-defined traf-
fic profiles. For validation purposes, in particular, the generator
was setup to generate traffic pursuant to specially selected pro-
files. For each such case, the generated traffic stream was cap-
tured and tested by an ATM traffic analyzer. Relevant results are
summarized in Fig. 6.

The upper left part of the figure relates to a model that con-
tained a state featuring normally distributed sojourns (with neg-
ative samples converted to zero values). Sample visit durations
at this state were captured by the analyzer (which was detecting
states by a rate-change beyond an appropriately set threshold)
and are displayed in histogram form. The shape of the histogram
{and further numerical parameters pertaining to it) confirms that
the sojourns were being generated according to the specifica-
tions.

The upper right part of Fig. 6 displays a time-trace of the rate
fluctuations in another traffic stream, corresponding to a semi-
Markovian model with 3 states, of a constant duration each.
Different rate levels r; were associated with the various states,
specifically ro = 0 Mbps, r; = 4.95 Mbps, and ro = 7.06
Mbps. Again, the captured trace confirms the fidelity to the
model specifications. It is mentioned that, in the implemented
prototype generator, featuring an STM-1 output link at 155.52
Mbps, the level of 4.95 Mbps cannot be generated by means
of a single ETEP, of the form (NC,ID), and was approxi-
mated by ETEPs of two neighboring rate-levels 155.52/(32+1)
and 155.52/(31 + 1), in accordance with the description of the
RPCA algorithm in Section III-F.

Lastly, the lower part of Fig. 6 displays (in semi-log scale)
the probabilities with which content thresholds are exceeded at
the output buffer of an ATM multiplexer, when the traffic load is



s ON@
source

1000 2000

3000

—— 10 on/off
sources

Ploss

Fig. 6. Results from traffic generation tests.

a homogeneous superposition of 10 exponential on/off sources.
Two curves have been obtained by tracing losses on the buffer.
The curve labeled “one source” corresponds to generation of
the traffic load through one traffic-stream module on the TG
hardware, using the aggregate semi-Markovian model of Sec-
tion ITI-A.1. The other curve corresponds to separate generation
of the individual on/off sources, by means of 10 distinct hard-
ware modules. Clearly, the two sets of results are quite close,
and it would have been even closer, had the time of the exper-
iment been greater, so as to reduce statistical errors associated
with the data-gathering process.

We close this section by presenting results from an exper-
iment relating to the large-scale multiplexing of traffic, per-
formed in the context of a research project that explored the
usage of asymptotic theories for the modeling of congestion in
large networking environments. The experiment involved the
generation of many statistically identical on/off traffic streams
(featuring a peak rate of 1500 cells/s and exponentially dis-
tributed on and off periods, of means 100 ms and 400 ms,
respectively), which were forwarded (and multiplexed) at the
same output port of an ATM switch. The port’s output capacity
was configurable to different values, through appropriate com-
mands to the switch’s management software. Three units of
the prototype ATM generator were employed, each contribut-
ing 16 independent stream modules. Furthermore, each module
was configured to produce traffic corresponding to the superpo-
sition of 10 on/off sources, for an overall effect of 3 x 16 x 10 =
480 on/off streams.

The buffer contents at the common output port were be-
ing traced (by software that was making regular queries to the
switch’s network management system, through an out-of-band
IP-link) and these samples were used for estimating the proba-
bility with which content thresholds were exceeded in the buffer.
The ‘overflow probability’ graph was then compared to numer-
ical results produced according to the theory for the homoge-
neous multiplexing of Markovian on/off fluid streams (follow-
ing [12], with appropriate embellishments [16] that allow en-
hanced precision and better numerical stability for a large num-

“Funded by the Greek Secretariat for Research & Technology, under contract
PENED 99 ED 92. The needs of this project provided part of the motivation for
developing the traffic generator presented herein.
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multiplexing.

ber of multiplexed sources).

The ‘solid-lined’ curves at the top of the two subfigures within
Fig. 7 display the theoretically predicted graphs of the overflow
probabilities, for two different values of the output port’s capac-
ity. The dotted curves at the top of the subfigures capture the
actually observed sample overflow probabilities. (The ‘dash-
dotted’ graphs at the bottom of the subfigures refer to a corre-
sponding asymptotic result, not relevant to the context of this
paper.) In both cases, the sampled graph is accurate down to
probability percentiles of about 5 x 10~3, which, in the negative
logarithmic scale (of base €) used, translates to an upper bound
of about 5. This bound is due to a processing bottleneck in the
buffer-polling software, which was issuing SNMP requests at
a maximum rate of about 100 requests/sec. For an overall ex-
periment duration of approximately 15 min, about 10° samples
were collected, and this number, combined with the fact that
about 500 observations at a certain occupancy level were at least
required for reliable estimation, leads to the abovementioned
probability threshold. The threshold could be further reduced
by enlarging the experiment’s duration.

As it may be evidenced from the figure, there is a close match
between the observed and theoretical behavior for both cases,
something that provides additional indirect evidence for the cor-
rectness of the traffic generation provided by the tool. The ex-
periment just described may also serve as evidence to the po-
tential of the generator for producing quite complex traffic loads
(like the superposition of 480 individual on/off streams in the
particular case at hand), which would hardly be realizable in a
testbed setting, had the tool not been available.
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VI. CONCLUSIONS

This paper presented an advanced architecture for a traffic
generator capable of producing ATM traffic streams compliant
with fully general semi-Markovian stochastic models. The soft-
ware that drives the traffic generation hardware employs sev-
eral kinds of optimization, for enhancing the software’s speed
to match the hardware’s potential and for ensuring that traffic
streams corresponding to models with a wide range of param-
eters can be generated efficiently and reliably. A prototype of
the traffic generator has already been successfully used in traffic
experiments and this experience verified the capabilities and the
effectiveness of the tool.

The architecture proposed in the paper is highly modular.
Thus, although the case studied deals with ATM traffic, the main
elements of the architecture can be used equally well for gener-
ating traffic loads of other networking technologies, IP-based
networks in particular. In fact, IP traffic generation is simpler
in some respects, because packets may be generated at arbitrary
points in time and the size of the packets need not be fixed as
in ATM. Therefore, when realizing semi-Markovian rate mod-
els for IP, the state transition algorithm NSDA and the sojourn-
determination algorithm STDA remain unchanged, while the
analog of RPCA (used to produce low-level rate specifications
during a state sojourn) may be considerably simplified, by em-
ploying any desirable value for the packet interarrivals (which
need not be an integral multiple of a base quantity). The ETEPs
produced may be used by low-level driver software for actually
creating the packets and feeding them to the host computer’s
NIC. Note that in the IP setting, a single ETEP per sojourn suf-
fices.

Future research will address the issue of applying the ideas in
this paper towards the production of tools for the generation of
IP traffic.

APPENDIX

A. Analysis of the RPCA Processing

As mentioned in Section III-E, when the rate corresponding
to some state, say r, does not correspond to an integral I.D-
parameter, it is attained (in an average sense over the state so-
journ), through a rate variation process, which involves the two
closest actually achievable rates r; and r},. By definition of these
rates,

R

Tj:m: i=14h,

)

where R is the link rate and 1D are integral. Furthermore,
since the respective rates are neighboring,
ID, =1D; — 1. 3)

In light of (2) and (3), the requirement r; < r < r}, translates to
iD; < R/T < ID; + 1, thus
ID, = |R/r]. )

Equations (2), (3), and (4) fully determine the rates to be used
for cell generation. At this point it is reminded that all rates

must uniformly refer to either the physical layer (thus including
the overhead for cell encapsulation) or to the ATM layer.

The next thing that must be determined by RPCA is the num-
ber of cells, NC; and NC'},, that must be generated at rates r;
and 7y, respectively, in order to achieve an average rate equal to
r over the state sojourn T". Obviously,

NC,+ NC}y, = NC, 5)

the total number of cells to be generated during the state so-
journ, a quantity directly expressible in terms of the high-level
specifications as

NC =[rT/d], (6)

where d is a constant equal to the cell-size and where [-] denotes
rounding’ to the nearest integral value. (If the rates refer to the
ATM layer d = 424 bits, otherwise the size is adjusted to in-
clude the cell-encapsulation overhead.) Further, observe that,
for any choice of NC; and NC), the time spent at each rate
level (measured in ATM slots) is equal to

T; = NC;(ID;+1), j=1h, ™

and that, if an average rate equal to r is to be achieved, the rela-
tion 7} + rp, T = r(T} + Ty) must also hold. By virtue of (2),
(3), (5), and (7), this last relation is equivalent to NC(R/r) =
NC x ID; + NC; which, by (4) and rounding to an integral
value yields

NC; = [NC(R/r — |R/r))]. ®)

Equations (5) and (8) fully determine the quantities NCj .
Moreover, they automatically take care of cases where the target
rate is directly achievable, since then (8) yields NC; = 0 and
all NC cells are generated at rate 7, = r. Further inspection
of (3) and (5)—(8) reveals that, if the rounding effects in (6) and
(8) are ignored, 17 + T} becomes equal to the overall sojourn
specification 7', as it should. The rounding may be shown to
impose a relative error for the sojourn value smaller than 1/NC,
which is negligible since, in all reasonable applications, NC >
1.

According to the discussion up to this point, an HLTE fea-
turing a non-achievable rate is represented through two ETEPs,
(NC,,ID;) and (NCh,IDy), with parameters determined by
(3)-(6) and (8). However, this arrangement breaks down if any
of NC| j exceeds NCr, = 216 _ 1, the maximal NC-value
that can be passed to the hardware for an ETEP. In order to deal
with such ‘overflow’ instances, RPCA divides the total number
of cells to be generated in L + 1 groups, where

L=|NC/NCyu], 9)

and where each of the first L groups contains a total of NC,,
cells, while the last group is of size

NCj=NC—Lx NCp. (10)

Each of the groups is then treated as if it referred to the whole
state visit, by further being subdivided in two parts, correspond-
ing to the emission of cells at rates r; and rj,, respectively. The

5Rounding may be achieved in terms of the floor operator, through the identity
6] = [z +0.5].
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Fig. 8. Conversion of HLTEs into ETEPs.

L groups of size NC,,, are split in parts of length NCy,,, and
NCh,,, determined by equations analogous to (8) and (5), in
which the quantity NC' has been replaced by NC,. A similar
arrangement exists for splitting the last group in parts of length
NC5 and NCpy. The rate-related I D-parameters are always
determined through (4) and (3).

By the method of groups, an HLTE may ultimately be trans-
lated into 2(L + 1) ETEPs (except when the division in (9) has
zero remainder, signified by NCjy = NC'y = 0, in which case
2L ETEPs are produced). Cases that do not require a break-
down in groups correspond to L = 0 and result in 2 ETEPs, as
explained earlier. Finally, whenever the rate r is directly achiev-
able, then NC; = 0 (for multiple groups NC), = NCip = 0),
the events corresponding to r; become void, and half the number
of ETEPs are ultimately produced.

In general, for any HLTE given as input to RPCA the al-
gorithm produces as output a set of six integral values for L,
NCym, NChu, NCij, NCpy, and 1Dy (the latter also deter-
mining ID;, through (3)). These values are stored in the cor-
responding element of the matrix produced during the STDA 1
preprocessing (see Section III-D) and are looked up by STDA .2,
when called from TEEA, for producing the ETEPs correspond-
ing to the HLTE retrieved. Fig. 8 sketches the production and
usage of RPCA output.

Note that, although breakdown into groups was introduced as
a means to overcome the limitation associated with the maxi-
mal NC-value imposed by the hardware to an ETEP, the tech-
nique is also useful for obtaining better management of the rate
fluctuations during a state sojourn, towards approximating the
target rate with higher fidelity. This is of particular importance
when the rate specification corresponds to small values of 1Dy 1,
so that the difference between r; and r, becomes appreciable.
Representing such an HLTE with just two ETEPs is not very ac-
curate, because it essentially replaces the constant-rate duration
with two smaller durations at distinctly different rates. Introduc-
ing alternating fluctuations between the two rate-levels is bet-
ter, because the quicker rate oscillations require a smaller time-
window for sufficient convergence to the corresponding average
rate (equal to the target specification in both cases) and thus be-
come unnoticeable in more contexts.

The rate-alteration effect can be achieved in all cases through
the introduction of groups, as discussed previously, by adjusting
the bound NC,, to a suitable value lower than the ‘hard’ limit
216 _ 1. The traffic generation software provides for that, by
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Fig. 9. The effect of different NC,, threshold values.

allowing the user to define the ratio between the mean N C-value
(i.e., the mean burst-size) and NC,,, individually for each of
the model states, at the initialization stage of the overall traffic
generation process.

The impact of different NC,, thresholds is shown in Fig. 9,
which displays the output of an ATM analyzer tracing the traf-
fic rates produced by the generator. The same traffic model has
been used in both subfigures (an on/off model with constant so-
journs and a peak rate that cannot be directly produced), but the
NC,, used at the left is larger than the one at right. Conse-
quently, and although the average talkspurt rate is the same for
both examples, the left one features longer and fewer rate vari-
ations. It is noted that when the traffic of Fig. 9 is generated
with an even smaller NC',, value, the analyzer cannot distin-
guish the rate fluctuations and reports a constant peak rate equal
to the model specification.

B. Range of Model Parameters

The acceptable range of model parameters is very wide. The
lower threshold for state sojourns is determined by the slot
duration, itself dependent on the output link’s capacity. For
the prototype’s STM-1 link at 155.52 Mb/s a slot lasts about
2.726 x 1072 ms, thus, in principle, state sojourns as low as
a few microseconds can be specified through NC = 1. Even
when a lower bound is imposed on NC' (say NC' = 100) for
assuring a small relative error between the specified and actual
sojourns (see Appendix-A) sojourn values can still be as low as
a fraction of 1ms.

The upper bound of a state’s duration depends on the cor-
responding rate, the worst case being traffic generation at the
link rate (/D = 0). In this case, each ETEP can last at
most NCrax = 2'6 — 1 slots and, by breaking the whole so-
journ in groups, as discussed in Appendix-A, a duration up to
Linax X NCmax may be achieved,® where Ly,,x denotes the max-
imum number of groups that can be represented internally. In
the prototype, L-values are unsigned short quantities (i.e., 16-
bit long), allowing for state durations longer than 3hr, for all
rate values.

The maximum number of states allowed in a model (also de-
termining the maximum number of sources in specifications of
homogeneous on/off superposition) is a compile time-constant,
which in the prototype has been set equal to 20 and may be read-
ily increased.

6 Lmax is not pre-multiplied by 2 because the link rate is directly achievable,
as explained in Appendix-A.
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Number of States 4

Rat A = 2.120

Rate( = 0.000 Duration0 - CONSTANT( 100.000

Ratel - 2.000 Durationl = EXPONENTIAL( 0.000 , 20.000 )
Rate2 = 4.000 Duration2 = NORMAL( 20.000 , 4.000

Rate3 - 5.000 Duration3 = FILE( D:\tg\trafcr010320\Disl.ds )
Probability Matrix:

0.0000 9.0000 0.5000 0.5000

0.4000 0.0000 0.3000 0.3000

0.4000 0.2000 0.0000 0.4000

0.2000 0.8000 0.0000 0.0000

Fig. 10. Typical TPC output file.

Finally, the range of rate specifications and the granularity of
achievable values have been discussed in Section II. For the
prototype’s output link, the lowest nonzero achievable rate is
4.746 kbps (corresponding to I D = 215 1) and the highest one
is equal to the link capacity, approximately 155.52 Mb/s (both
thresholds referring to the physical layer). It is reminded that
zero rate values are achieved through silence events, specifying
an S D-value.

C. Storage of Traffic Model Specifications into TPC-Produced
Files

The traffic profile creator (TPC) software provides a user-
interface for the specification of traffic model parameters. TPC
processes the user-input, performs validity checks on the pa-
rameter values, estimates some derivative quantities (like the
model’s mean traffic rate) and stores a description of the model
into a computer file of a standard format. The output file is read
and parsed by the main traffic generation software (the TGP)
during initialization, when some or all of the generator’s hard-
ware modules are being associated with corresponding traffic
models. TPC runs independently from TGP (even at a separate
computer) and its output files may be stored for later usage.

The contents of a typical TPC output file are displayed in
Fig. 10. This file corresponds to a model with 4 states, of rates
ranging from 0 to 5 Mbps (the implicitly assumed rate unit in
TPC files). Three out of four states use state sojourn PDFs of
predefined form, with appropriate additional parameter speci-
fications (the mean state duration and, in the truncated normal
case, the standard deviation, all assumed in ms-units), while the
4-th state employs a PDF specification through a table of values,
contained in a designated input file. The user-specified transi-
tion probabilities are also contained in the file. TPC has calcu-
lated the mean traffic rate for this model (denoted as ‘Rat_A’)
and the value is included in the file for reference.

When TPC is used for specifying models corresponding to the
homogeneous superposition of exponential on/off sources, the
user just needs to enter the number of on/off sources, the peak
rate of each source, and the mean on- and off-durations. TPC un-
dertakes the construction of the semi-Markovian model for the
superposition (as described in Section III-A.1) and outputs the
appropriate file in the standard form. Example output is shown
in Fig. 11, corresponding to the superposition of 5 sources with
a peak rate of 1 Mbps and mean on- and off-durations equal to
10 ms and 20 ms, respectively. All numerical quantities in the
file were computed by TPC.
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Number of States 6

Duration ON 10.00

= Duration_OFF = 20.00
Rat_A
Rate0
Ratel
Rate2
Rate3
Rated
Rateb

L667
.000
.000
.000
.000
.000
.000

.0000
-3333
.8571
.5000
L2222
.Qo000

Duration =
Duration
Duration
Duration
Duration
Duration

EXPONENTIAL (
EXPONENTIAL (
EXPONENTIAL (
EXPONENTIAL (
EXPONENTIAL(
EXPONENTIAL(

G wN O
[
coocococo
[NENINECRRIS

Probability Matrix:
0000
3333
o000
0000
0000
L0000

.0000
.0000
5714

1 .0000
0

0

0.0000

0

0

.6667

0 .0000
0

0.0000

0

0

0

-0000
L4286
L0000
.8889
.0000

0000
0000
0000
2500
.0000
.0000

L0000
.0000
.0000
.0000
L1111
.0000

L7500
.0000
.0000

L0000
.0000

coocooo
coocooo

Fig. 11. TPC output for the homogeneous superposition of on/off traffic.

Table 1. Acronyms.

Acronym | Explanation

ESM Event Storage Memory

ETEP Elementary Traffic Event Pair
HLTE High Level Traffic Event

HMS Half Memory Size

ID Inter-cell Distance

MSB Most Significant Bit

NC Number of Cells

NSDA Next State Decision Algorithm
PDF Probability Distribution Function
RPCA Rate to Pairs Conversion Algorithm
SD Silence Duration

STDA Sojourn Time Decision Algorithm
TEEA Traffic Events Encapsulation Algorithm
TG Traffic Generator

TGP Traffic Generator Programmer

TPC Traffic Profile Creator

D. List of Acronyms

Table 1 summarizes the acronyms most frequently used in the
paper.
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