References
- R. C. Ruo and K. L. Su, 'A review of high-level multisensor fusion: approaches and applications,' Proc. Of IEEE Int'l. Conf. On Multisensor Fusion and Integration for Intelligent Systems, pp.25-31, Taipei, Taiwan, 1999 https://doi.org/10.1109/MFI.1999.815960
- J. M. Lee, B. H. Kim, M. H. Lee, M. C. Lee, J. W. Choi, and S. H. Han, 'Fine active calibration of camera position/orientation through pattern recognition,' Proc. of IEEE Int'l. Symp. On Industrial Electronics, pp. 100-105, Slovenia, 1999
- L. Hong, A. Lynch, 'Recursive temporal-spatial information fusion with applications to target identification,' Aerospace and Electronic Systems, IEEE Transactions on, vol. 29 Issue. 2, pp. 435-445. 1993 https://doi.org/10.1109/7.210081
- J. M. Richardson and K. A. Marsh. 'Fusion of multi sensor data,' International Journal of Robotics Research, 7(6): pp. 78-96, 1988 https://doi.org/10.1177/027836498800700607
- N. Okada, T. Nagata, 'A parts picking system with a range finder and a camera system,' Proc. of the IEEE International Conferece on Robotics and Automation, pp. 1410-1415, 1995 https://doi.org/10.1109/ROBOT.1995.525475
- M. Kam, X. Zhu, and P. Kalata, 'Sensor fusion for mobile robot navigation,' Proc. of the IEEE, vol. 85, no. 1, pp. 108-119, 1997 https://doi.org/10.1109/JPROC.1997.554212
- M. Kam, A. Naim, P. Labonski, and A. Guez, 'Adaptive sensor fusion with nets of binary threshold elements,' IJCNN International joint conference on neural networks, vol. 2, pp. 57-64, 1989 https://doi.org/10.1109/IJCNN.1989.118678
- Z. Chair, P. K. Varshney, 'Optimal data fusion in multiple sensor detection systems,' IEEE Transaction on Aerospace and Electronic Systems, AES-22, no. 1, pp. 98-101, 1986 https://doi.org/10.1109/TAES.1986.310699
- T. Fukuda, S. Ito, F. Arai, Y. Yokoyama, Y. Abe, K. Tanaka, Y. Tanaka, 'Navigation system based on ceiling landmark recognition for autonomous mobile robot-landmark detection based on fuzzy template matching (FTM),' Proc. of the IEEE/RSJ International Conference on, vol. 2, pp. 150-155, Aug. 1995 https://doi.org/10.1109/IROS.1995.526153
- Y. Abe, M. Shikano, T. Fukuda, F. Arai, Y. Tanaka, 'Vision based navigation system by variable template matching for autonomous mobile robot,' Robotics and Automation, Proc. of the IEEE International Conference on, vol. 2, pp. 952-957, May 1998 https://doi.org/10.1109/ROBOT.1998.677209
- E. B. Hall, A. E. Wessel, and G. L. Wise, 'Some aspects of fusion in estimation theory,' IEEE Transactions on Information Theory, 37(2): pp. 420-422, 1991 https://doi.org/10.1109/18.75268
- C. Brown, H. Durrant-Whyte, J. Leonard, et al. Distributed data fusion using Kalman filtering. In Abidi and Gonzales, editors, Data Fusion in Robotics and Machine Intelligence, pp. 267-309. Academic Press, 1992
- H. R. Hashemipour, S. Roy, and A. J. Laub, 'Decentralized structures for parallel kalman filtering,' IEEE Transactions on Automatic Control, 33(1): pp. 88-93, 1988 https://doi.org/10.1109/9.364
- S. Thrun, 'A bayesian approach to landmark discovery and active perception for mobile robot navigation,' (Tech. rep. CMU-CS-96-122). Pittsburgh, PA: Carnegie Mellon University, Department of Computer Science. 1996
- A. P. Dempster, N. M. Laird, and D. B. Rubin, 'Maximum likelihood from incomplete data via the EM algorithm,' J. R. Statist. Soc., vol. 39, pp. 1-38, 1977
- K. Ito and K. Xiong, 'Gaussian filters for nonlinear filtering problems,' IEEE Transactions on Automatic Control, 45(5): pp. 910-927, May 2000 https://doi.org/10.1109/9.855552
- S. J. Julier and J. K. Uhlmann, 'A general method for approximating nonlinear transformations of probability distributions,' Technical report, RRG, Dept. of Engineering Science, University of Oxford, 1996
- S. J. Julier and J. K. Uhlmann, 'A new extension of the kalman filter to nonlinear systems,' In Proc. of AeroSense: The 11th Int. Symp. On Aerospace/Defence Sensing. Simulation and Controls, 1997
- S. J. Julier, J. K. Uhlmann and H. Durrant-Whyte, 'A new approach for filtering nonlinearing systems,' In Proceedings of the American Control Conference, pp. 1628-1632, 1995
- M. Norgaard, N. K. Poulsen, and O. Ravn, 'Advances in derivative-free state estimation for nonlinear systems,' Technical Report IMM-REM-1998-15, Department of Mathmetical Modelling/Department of Automation, Technical University of Denmark, 28 Lyngby, Denmark, 2000
- G. V. Puskorius and L. A. Feldkamp, 'Decoupled extended kalman filter training of feedforward layered networks,' In IJCNN, vol. 3, pp. 771-777,1991 https://doi.org/10.1109/IJCNN.1991.155276
- S. Singhal and L. Wu, 'Training multilayer perceptrons with the extended kalman filter,' In Advances in Neural Information Processing Systems 1, pp. 133-140, San Mateo, CA, 1989