Flow Visualization in Realistic Arterial Bypass Graft Model

  • Singh, Megha (School of Mechanical Engineering, Kyungpook National University) ;
  • Shin, Se-Hyun (School of Mechanical Engineering, Kyungpook National University)
  • 발행 : 2005.04.30

초록

Background: Coronary atherosclerosis artery disease is the leading cause of morbidity and mortality. Coronary artery bypass grafting (CABG) which utilizes the saphenous vein graft, has helped in alleviating the suffering of these patients. Newer techniques are being developed to improve upon the techniques. Still there is significant number of failures, leading to re-grafting or re-vascularization. Some studies have helped in identifying the high and low shear stress regions. Further studies based on their realistic models are required. Material, methods and results: we developed the realistic model of fully blocked right coronary with bypass graft placed at angle of $5^0$ with curvature similar to that of artery. Pulsatile flow of birefringent solution through this model by polarized light was visualized. The images of complete flow field in the model were recorded and analyzed. Regions of high flow disturbances which are prone to further changes are identified. Existence of recirculation in the blocked coronary may initiate new blood-tissue interactions deleterious to bypass graft. Conclusion: Our study shows that by selecting the procedure to place bypass graft at minimum angle with curvature similar to that of artery and smooth sutures may improve the life span of the graft. This study also identified that coronary blocked regions contributing by recirculation flow at the proximal and distal regions of bypass which may require further studies.

키워드