DOI QR코드

DOI QR Code

Ni 단층이 삽입된 Rh 박막의 전자구조와 자성

Electronic Structure and Magnetism of Ni Monolyer Embedded Between Rh Layers

  • Kim Sun-Hee (Department of Physics, Incheon University) ;
  • Jang Y.R. (Department of Physics, Incheon University) ;
  • Lee J.I. (Department of Physics, Inha University)
  • 발행 : 2005.01.01

초록

비자성 전이금속인 Rh 여러 층 사이에 자성 전이금속인 Ni 한층을 넣은 4Rh/Ni/4Rh(001) 계에서 Rh과 Ni의 자기 모멘트 진동현상을 FLAPW(full-potential linearized augmented plane wave) 방법을 이용하여 연구하였다. 가운데 층에 있는 Ni의 자기 모멘트를 계산한 결과는 0.34${\mu}_B$으로 덩치 Ni의 값보다 약 40% 감소한 값이다. Ni과의 강한 띠 혼성으로 Rh의 각 원자 층에 자기모멘트의 변화가 나타났는데 이 변화는 중심에서 표면으로 갈수록 작아지는 감쇠 진동을 하였다. Rh의 영향을 받아 가운데 Ni층의 폐르미 준위가 Ni의 에너지 띠 안쪽으로 이동하여 Ni의 전자수가 줄어들고 있음을 계산된 상태밀도 모양에서 알 수 있었다.

A single slab in which one Ni(001) atom layer embedded between two of four Rh layers is considered to examine the oscillation of magnetic moment in each layer. The all electron total-energy full-potential linearized augmented plane wave(FLAPW) method was used to calculate the spin densities, magnetic moments, density of states(DOS), and the number of electrons within each muffin-tin(MT) sphere. The magnetic moment of the center layer Ni(C) in the system of 4Rh/Ni/4Rh is calculated to be 0.34${\mu}_B$, which is 40% have magnetic moment at the interface layers by strong band hybridization with Ni(C) when Ni(001) monolayers is inserted, and the magnetic moment shows a damped oscillation as we go from center Ni(C) layer to the surface Rh(S). From the calculated density of states, it is found that the Fermi level shifts inside the energy band of the Ni(C) in affection of Rh(001).

키워드

참고문헌

  1. I. Morrisson, D. M. Bylander, and L. Kleinman, Phys. Rev. Lett. 71, 1083 (1993) https://doi.org/10.1103/PhysRevLett.71.1083
  2. M. Weinert, S. Blugel, and P. D. Johnson, Phys. Rev. Lett. 71, 4097 (1993) https://doi.org/10.1103/PhysRevLett.71.4097
  3. S. C. Wu, K. Garrison, A. M. Begley, F. Jona, and P. D. Johnson, Phys. Rev. B 49, 14081 (1994) https://doi.org/10.1103/PhysRevB.49.14081
  4. R. Wu and A. J. Freeman, Phys. Rev. B 45, 7222 (1992) https://doi.org/10.1103/PhysRevB.45.7222
  5. G. A. Mulhollan, R. L. Fink, and J. L. Erskine, Phys. Rev. B 44, 2393 (1991) https://doi.org/10.1103/PhysRevB.44.2393
  6. M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954) https://doi.org/10.1103/PhysRev.96.99
  7. T. Kasuya, Prog. Theoret. Phys. 16, 45 (1956) https://doi.org/10.1143/PTP.16.45
  8. K. Yosida, Phys. Rev. 106, 893 (1957) https://doi.org/10.1103/PhysRev.106.893
  9. J. Friedel, Nuovo Cimento, Suppl. 2, 287 (1958)
  10. M. D. Stiles, J. Magn. Magn. Mater. 200, 322 (1999) https://doi.org/10.1016/S0304-8853(99)00334-0
  11. C. Kittel, Introduction to Solid State Physics, 7th ed. (Wiley &Sons, New York, 1996), p. 23
  12. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B 24, 864 (1981) https://doi.org/10.1103/PhysRevB.24.864
  13. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26, 4571 (1982) https://doi.org/10.1103/PhysRevB.26.4571
  14. L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064 (1971) https://doi.org/10.1088/0022-3719/4/9/018
  15. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972)
  16. In Gee Kim and Jae Il Lee, J. Korean Phys. Soc. 39, 684 (2001)
  17. E. Wimmer, A. J. Freeman, and H. Krakauer, Phys. Rev. B 30, 3113 (1984) https://doi.org/10.1103/PhysRevB.30.3113