Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG (Radiation Food Science and Biotechnology Team, Korea Atomic Energy Research Institute) ;
  • YONG, KYEONG-HWA (Department of Food Science and Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University) ;
  • RYU, SANG-RYEOL (Department of Food Science and Biotechnology, School of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University)
  • Published : 2005.02.01

Abstract

Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

Keywords

References

  1. Ahn, J. B., H.-I. Hwang, and J. H. Park. 2001. Physiological responses of oxygen-tolerant anaerobic Bifidobacterium longum under oxygen. J. Microbiol. Biotechnol. 11: 443-451
  2. Akabar, S., L. M. Schechter, C. P. Lostroh, and C. A. Lee. 2003. AraC/XylS family members, HilD and HilC, directly activate virulence gene expression independently of HilA in Salmonella typhimurium. Mol. Microbiol. 47: 715-728 https://doi.org/10.1046/j.1365-2958.2003.03322.x
  3. Alphen, W. V. and B. Lugtenberg. 1977. Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli. J. Bacteriol. 131: 623-630
  4. Bajaj, V., R. L. Lucas, C. Hwang, and C. A. Lee. 1996. Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol. Microbiol. 22: 703-714 https://doi.org/10.1046/j.1365-2958.1996.d01-1718.x
  5. Bakshi, C. S., V. P. Singh, M. W. Wood, P. W. Jones, T. S. Wallis, and E. E. Galyov. 2000. Identification of SopE2, a Salmonella secreted protein which is highly homologous to SopE and involved in bacterial invasion of epithelial cells. J. Bacteriol. 182: 2341- 2344 https://doi.org/10.1128/JB.182.8.2341-2344.2000
  6. Bang, I. S., B. H. Kim, J. W Foster, and Y. K. Park. 2000. OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 2245- 2252 https://doi.org/10.1128/JB.182.8.2245-2252.2000
  7. Boddicker, J. D., B. M. Knosp, and B. D. Jones. 2003. Transcription of the Salmonella invasion gene activator, hilA, requires HilD activation in the absence of negative regulators. J. Bacteriol. 185: 525- 533 https://doi.org/10.1128/JB.185.2.525-533.2003
  8. Chan, R. K., D. Botstein, T. Watanabe, and Y. Ogata. 1972. Specialized transduction of tetracycline resistance by phage P22 in Salmonella typhimurium. II. Properties of a high frequency transducing lysate. Virology 50: 883- 898 https://doi.org/10.1016/0042-6822(72)90442-4
  9. Chatfield, S. N., C. J. Dorman, C. Hayward, and G. Dougan. 1991. Role of ompR -dependent genes in Salmonella typhimurium virulence: Mutants deficient in both OmpC and OmpF are attenuated in vivo. Infect. Immun. 59: 449- 452
  10. Chung, T. W., U. H. Jin, and C. H. Kim. 2003. Salmonella typhimurium LPS confers its resistance to antibacterial agents of baicalin of Scutellaria baicalensis George and novobiocin: Complementation of the rfaE gene required for ADP-L-glycero-D-manno-heptose biosynthesis of lipopolysaccharide. J. Microbiol. Biotechnol. 13: 564- 570
  11. Collazo, C. M. and J. E. Galan. 1997. The invasionassociated type-III protein secretion system in Salmonella; a review. Gene 192: 51- 59 https://doi.org/10.1016/S0378-1119(96)00825-6
  12. Darwin, K. H. and V. L. Miller. 1999. InvF is required for expression of genes encoding proteins secreted by the SPIl type III secretion apparatus in Salmonella typhimurium. J. Bacteriol. 181: 4949- 4954
  13. Darwin, K. H. and V. L. Miller. 2001. Type III secretion chaperone-dependent regulation: Activation of virulence genes by SicA and InvF in Salmonella typhimurium. EMBO J. 20: 1850- 1862 https://doi.org/10.1093/emboj/20.8.1850
  14. Dorman, C. J., S. Chatfield, C. F. Higgens, C. Hayward, and G. Dougan. 1989. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect. Immun. 57: 2136-2140
  15. Eichelberg, K. and J. E. Galan. 1999. Differential regulation of components and substrates of the cetiosome 63 type III secretion system of Salmonella typhimurium by the transcription activators InvF and HilA. Infect. Immun. 67: 4099-4105
  16. Eichelber, K., W. D. Hardt, and J. E. Galan. 1999. Characterization of SprA, an AraC-like transcriptional regulator encoded within the Salmonella typhimurium pathogenicity island 1. Mol. Microbiol. 33: 139-152 https://doi.org/10.1046/j.1365-2958.1999.01458.x
  17. Ernst, R. K., D. M. Domboski, and J. M. Merrick. 1990. Anaerobiosis, type I fimbriae, and growth phase are factors that affect invasion of Hep-2 cells by Salmonella typhimurium. Infect. Immun. 58: 2104- 2106
  18. Friebel, A, H. Ilchrnann, M. Aepfelbacher, K. Ehrbar, W. Machleidt, and W.-D. Hardt. 2001. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J. Biol. Chem. 276: 34035-34040 https://doi.org/10.1074/jbc.M100609200
  19. Hardt, W.-D., L.-M. Chen, K. E. Schuebel, X. R. Bustelo, and J. E. Galan. 1998. Salmonella typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 815- 826 https://doi.org/10.1016/S0092-8674(00)81442-7
  20. Hong, K H. and V. L. Miller. 1998. Identification of a novel Salmonella invasion locus homologous to Shigella ipgDE. J. Bacteriol. 180: 1793- 1802
  21. Klein, J. R., T. F. Fahlen, and B. D. Jones. 2000. Transcriptional organization and function of invasion genes within Salmonella enterica serovar Typhimurium pathogenicity island l, including the prgH, prgI, prgJ, prgK, orgA, orgB, and orgC genes. Infect. Immun. 68: 3368- 3376 https://doi.org/10.1128/IAI.68.6.3368-3376.2000
  22. Lee, C. A. and S. Falkow. 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 98: 1847- 1851
  23. Lim, S., H. Seo, H. Yoon, S. Choi, S. Heu, and S. Ryu. 2003. Molecular analysis of Salmonella enterotoxin gene expression. J. Microbiol. Biotechnol. 13: 598- 606
  24. Lostroh, C. P., V. Bajaj, and C. A. Lee. 2000. The cis requirements for transcriptional activation by HilA, a virulence determinant encoded on SPI-1. Mol. Microbiol. 37: 300-315 https://doi.org/10.1046/j.1365-2958.2000.01991.x
  25. Lucas, R. L. and C. A. Lee. 2001. Roles of hilC and hilD in regulation of hilA expression in Salmonella enterica serovar Typhimurium. J. Bacteriol. 183: 2733- 2745 https://doi.org/10.1128/JB.183.9.2733-2745.2001
  26. Lundberg, U., U. Vinatzer, D. Berdnik, A. von Gabain, and M. Baccarini. 1999. Growth phase-regulated induction of Salmonella-induced macrophage apoptosis correlates with transient expression of SPI-l genes. J. Bacteriol. 181: 3433- 3437
  27. Mills, D. B., V. Bajaj, and C. A. Lee. 1995. A 40 kilobase chromosomal fragment encoding Salmonella typhimurium invasion genes is absent from the corresponding region of the Escherichia coli K-12 genome. Mol. Microbiol. 15: 749- 759 https://doi.org/10.1111/j.1365-2958.1995.tb02382.x
  28. Oleknovich, I. N. and R. J. Kadner. 2002. DAN-binding activities of the HilC and HilD virulence regulatory proteins of Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 4148-4160 https://doi.org/10.1128/JB.184.15.4148-4160.2002
  29. Pancetti, A. and J. E. Galan. 2001. Characterization of the mutS-proximal region of the Salmonella typhimurium SPI-l identifies a group of pathogenicity island-associated genes. FEMS Microbiol. Lett. 197: 203- 208 https://doi.org/10.1111/j.1574-6968.2001.tb10604.x
  30. Rakeman, J. L., H. R. Bonifield, and S. I. Miller. 1999. A HilA-independent pathway to Salmonella typhimurium invasion gene transcription. J. Bacteriol. 181: 3096- 3104
  31. Schechter, L. M. and C. A. Lee. 2001. AraC/XylS family members, HilC and HilD, directly bind and derepress the Salmonella tvphimurium hilA promoter. Mol. Microbiol . 40: 1289- 1299 https://doi.org/10.1046/j.1365-2958.2001.02462.x
  32. Schechter. L. M., S. M. Darnrauer, and C. A. Lee. 1999. Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol. Microbiol. 32: 629- 642 https://doi.org/10.1046/j.1365-2958.1999.01381.x
  33. Shin, J. W., J. K. Kang, K. I. Jang, and K. Y. Kim. 2002. Intestinal colonization characteristics of Lactobacillus spp. isolated from chicken cecum and competitive inhibition against Salmonella typhimurium. J. Microbiol. Biotechnol. 12: 569- 576
  34. Stanton, T. 2000. Ecological aspects of host colonization: Coaggregation, osmoadaptation, and acid tolerance or resistance. pp 61- 75. In Brogden K. A. et al. 3nd eds. Virulence Mechanisms of Bacterial Pathogens. American Society for Microbiology Press, Washington. DC. U.S.A
  35. Steele-Mortimer, O., S. Meresse, J.-P. Gorvel, B.-H. Toh, and B. B. Finaly. 1999. Biogenesis of Salmonella typhimuriumcontaining vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol. 1: 33- 49 https://doi.org/10.1046/j.1462-5822.1999.00003.x
  36. Tartera, C. and E. S. Metcalf. 1993. Osmolarity and growth phase overlap in regulation of Salmonella tvphi adherence to and invasion of human intestinal cells. Infect, lmmun. 61: 3084- 3089
  37. Zhou, D., L.-M. Chen, L. Hernandez, S. B. Shears, and J. E. Galan. 2001. A Salmonella inositol poly phosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39: 248- 259 https://doi.org/10.1046/j.1365-2958.2001.02230.x
  38. Zhou, D., M. Mooseker, and J. E. Galan. 1999. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283: 2091- 2095