Isolation of Gibberellins-Producing Fungi from the Root of Several Sesamum indicum Plants

  • CHOI, WHA-YOUL (Department of Microbiology, Kyungpook National University) ;
  • RIM, SOON-OK (Department of Microbiology, Kyungpook National University) ;
  • LEE, JIN-HYUNG (Department of Microbiology, Kyungpook National University) ;
  • LEE, JIN-MAN (Department of Microbiology, Kyungpook National University) ;
  • LEE, IN-JUNG (Department of Agriculture, Kyungpook National University) ;
  • CHO, KANG-JIN (National Institute of Agricultural Biotechnology) ;
  • RHEE, IN-KOO (Department of Agricultural Chemistry, Kyungpook National University) ;
  • KWON, JUNG-BAE (Institute for Bioresources Research Gyeongbuk Provincial A.T.A.) ;
  • KIM, JONG-GUK (Department of Microbiology, Kyungpook National University)
  • Published : 2005.02.01

Abstract

Gibberellins (GAs) play important roles in plant growth and development. Fifty-four fungi were isolated from the roots of 4 kinds of Sesamum indicum plants, and the production of GAs was spectrophotometrically examined. The number of GA-producing fungi was two strains from S. indicum, four strains from Gold S. indicum, and five strains from Brown S. indicum. Eleven fungi with GAs-producing activity were incubated for seven days in 40 ml of Czapek's liquid medium at $25^{\circ}C$ and 120 rpm, and the amount of each GA in the medium was measured by gas chromatographymass spectrometery (GC-MS). Penicillium commune KNU5379 produced more $GA_3$, $GA_4$, and $GA_7$ than Gibberella fujikuroi, Fusarium proliferatum, and Neurospora crassa which are known as GAs-producing fungi. GAs-producing activity of the P. commune KNU5379 was shown to produce 71.69 ng of $GA_1$, 252.42 ng of $GA_3$, 612.00 ng of $GA_4$, 259.00 ng of $GA_7$, and 202.69 ng of $GA_9$ in 25 ml of liquid medium. Bioassay of culture fluid of GA-producing fungi was also performed on rice sprout.

Keywords

References

  1. Avalos, J., R. Sanchez-Fernandez, R. Fernandez-Martin, and R. Candau. 1997. Regulation of Gibberellin production in the fungus Gibberella fujikuroi. Recent Res. Dev. Plant Physiol. 1: 105- 115
  2. Bayman, B., L. L. Lebron, R. L. Tremblay, and D. J. Lodge. 1997. Variation in endophytic fungi from roots and leaves of Lepanthes (Orchidaceae). New Phytol. 135: 143- 149 https://doi.org/10.1046/j.1469-8137.1997.00618.x
  3. Borrow, A., S. Brown, E. G. Jefferys, R. H. J. Kessel, P. B. Lloyd, A. Rothwell, B. Rothwell, and J. C. Swait. 1964. Metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 10: 407-444 https://doi.org/10.1139/m64-054
  4. Brucker, B. 1992. Regulation of gibberellin fermentation by the fungus Gibberella fujikuroi. In: Chadwick, D. J. and Whelan, J. (eds.), Secondary Metabolites: Their Funtion and Evolution. Wiley, Chichester, Ciba Foundation Symposium 171: 129-143
  5. Brucker, B. and D. Blecschmidt. 1991. Nitrogen regulation of Gibberellin biosynthesis in Gibberellia fujikuroi. Appl. Microbiol. Biotechnol. 53: 646- 650 https://doi.org/10.1007/s002530000326
  6. Candau, R., J. Avalos, and E. C.-Olmedo. 1992. Regulation of gibberellin biosynthesis in Gibberellia fujikuroi. Plant Physiol. 100: 1184- 1188 https://doi.org/10.1104/pp.100.3.1184
  7. Desjardins, A. E., H. K. Manandhar, R. D. Plattner, G. G. Manandhar, S. M. Poling, and C. M. Maragos. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66: 1020- 1025 https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  8. Doumas, P., N. Imbault, T. Moritz, and P. C. Oden. 1992. Detection and identification of gibberellins in Douglas fir (Pseudotsuga menziesii) shoots. Physiologia Plantarum 85: 489-494 https://doi.org/10.1111/j.1399-3054.1992.tb05816.x
  9. Escamilla Silva, E. M., L. Dendooven, I. P Magana, R. Parra, and M. De la Torre. 2000. Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J. Biotechnol. 76: 147- 155 https://doi.org/10.1016/S0168-1656(99)00182-0
  10. Graeb, J. E. 1987. Gibberellin biosynthesis and control. Annu. Rev. Plant Physiol. 38: 419- 465 https://doi.org/10.1146/annurev.arplant.38.1.419
  11. Han, J. J., D. M. Shin, W. C. Bae, S. K. Hong, J. W. Suh, S. G. Koo, and B. C. Jeong. 2002. Identification of FM001 as plant growth-promoting substance from Acremonium strictum MJN1 culture. J. Microbiol. Biotechnol. 12: 327-330
  12. Hasan, H. A. 2002. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinitycalcium interaction. Acta Microbiol. Immunol. Hung. 49: 105- 118 https://doi.org/10.1556/AMicr.49.2002.1.11
  13. Hendden, P. and A. L. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Science 5: 523- 530 https://doi.org/10.1016/S1360-1385(00)01790-8
  14. Hedden, P., A. L. Phillips, M. C. Rojas, E. Carrera, and B. Tudzynski. 2002. Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J. Plant Growth Regulation 20: 319- 331 https://doi.org/10.1007/s003440010037
  15. Hedden, P. and W. M. Proebsting. 1999. Genetic analysis of gibberellin biosynthesis. Plant Physiology 119: 365- 370 https://doi.org/10.1104/pp.119.2.365
  16. Holbrook, A. H., W. J. Edge, and F. Bailey. 1961. Adv. Chem. Series 28: 159 https://doi.org/10.1021/ba-1961-0028.ch018
  17. Jeon, Y. H., S. P. Chang, I. G. Hwang, and Y. H. Kim. 2003. Involvement of growth-promoting rhizobacterium Paenibacillus polymyxa in root rot of stored Korean ginseng. J. Microbiol. Biotechnol. 13: 881- 891
  18. Kawaide, H. and T. Sassa. 1993. Accumulation of gibberellin $A_1$, and the metabolism of gibberellin $A_9$ to gibberellin $A_1$ in a Phaeosphaeria sp. L 487 culture. Biosci. Biotech. Biochem. 57: 1403- 1405 https://doi.org/10.1271/bbb.57.1403
  19. Kawanabe, Y., H. Yamane, T. Murayama, N. Takahashi, and T. Nakamura. 1983. Identification of gibberellin $A_3$ in mycelia Neurospora crassa. Agric. Biol. Chem. 47: 1693-1694 https://doi.org/10.1271/bbb1961.47.1693
  20. Karabaghli, C., P. Frey-Klett, B. Sotta, M. Bonnet, and F. Le Tacon. 1998. In vitro effect of Laccaria bicolor S238 N and Pseudomonas fluorescens strain BBc6 on rooting of derooted shoot hypocotyls of Norway spruce. Tree Physiol. 18: 103-111 https://doi.org/10.1093/treephys/18.2.103
  21. Kim, K. C. S. S. Yoo, Y. A. Oh, and S. J. Kim. 2003. Isolation and characteristics of Trichoderma harrianum FJl producing cellulases and xylanase. J. Microbiol. Biotechnol. 13: 1-8
  22. Kim, K. S. and Y. S. Lee. 2000. Rapid and accurate species specific detection of Phytophthora infestans though analysis of ITS regions in its rDNA. J. Microbiol. Biotechnol. 10: 651-655
  23. Kim, S. Y, S. Y Park, and H. S. Jung. 2001. Phylogenetic classification of antrodia and related genera based on ribosomal RNA internal transcribed spacer sequence. J. Microbiol. Biotechnol. 11: 475- 481
  24. Lange, T. 1998. Molecular biology of gibberellin synthesis. Planta 204: 409-419 https://doi.org/10.1007/s004250050274
  25. Lee, H. G., J. Y. Lee, and D. H. Lee. 2001. Cloning and characterization of the ribosomal RNA gene from Gonyaulax polyedra. J. Microbiol. Biotechnol. 11: 515- 523
  26. Lee, I.-J., K. R. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in sorghum. Plant Physiol. 116: 1003- 1011 https://doi.org/10.1104/pp.116.3.1003
  27. Lee, W. J. and K. S. Bae. 2001. The phylogenetic relationship of several oscillatorian cyanobacteria, forming blooms at Daecheong reservoirs, based on partial 16S rDNA gene sequences. J. Microbiol. Biotechnol. 11: 504- 507
  28. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growth-promoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249- 257
  29. Lovegrove, A. and R. Hooley. 2000. Gibberellin and abscisic acid signalling in aleurone. Trends Plant Science 5: 102-110 https://doi.org/10.1016/S1360-1385(00)01571-5
  30. Macmillan, J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul. 20: 387-442 https://doi.org/10.1007/s003440010038
  31. MacMillan, J., D. A. Ward, A. L. Phillip, M. J. Sanchez-Beltran, P. Gaskin, T. Lange, and P. Hedden. 1997. Gibberellin biosynthesis from gibberellin A12-aldehyde in endosperm and embryos of marah macrocarpus. Plant Pliysiol. 113: 1369- 1377 https://doi.org/10.1104/pp.113.4.1369
  32. Mander, L. N. 2003. Twenty years of gibberellin research. Nat. Prod. Rep. 20: 49- 69 https://doi.org/10.1039/b007744p
  33. Mihlan, M., V. Homann, T.-W. D. Liu, and B. Tudzynski. 2003. Area directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Molecular Microbiol. 47: 975- 991 https://doi.org/10.1046/j.1365-2958.2003.03326.x
  34. Olszewski, N., T.-P. Sun, and F. Gubler. 2002. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 14: 61- 80 https://doi.org/10.1105/tpc.010476
  35. Petter, T. I., S. B. Rood, and K. P. Zanewich. 1999. Light intensity, gibberellin content and the resolution of shoot growth in Brassica. Planta 207: 505- 511 https://doi.org/10.1007/s004250050510
  36. Rachev, Rossen, Vjara Gancheva, Sebastiana Bojkova, Christo Christov, and Tiha Zafirova. 1997. Gibberellin biosynthesis by Fusarium moniliforme in the presence of hydrophobic resin amberlite XAD-2. Bulg. J. Plant Physiol. 12: 24- 31
  37. Rademacher, W. 1997. Gibberellins, pp. 193-205. In: Anke, T. (ed.), Fungal Biotechnology. Champman and Hall, London Glasgow Weinheim New York Tokyo Melbourne Madras
  38. Rademacher, W. and J. E. Graebe. 1979. Gibberellin A. produced by Sphaceloma manihoticola, the cause of the superelongation disease of cassava (Manihot seculenta). Biochem. Biophys. Res. Commun. 91: 35- 40 https://doi.org/10.1016/0006-291X(79)90579-5
  39. Robinson, T., D. Singh, and P. Nigam. 2001. Solid-state fermentation: A promising microbial technology for secondary metabolite production. Appl. Microbiol. Biotechnol. 55: 284- 289 https://doi.org/10.1007/s002530000565
  40. Sanchez-Fernandez, R., J. Avalos, and E. Cerda-Olmedo. 1997. Inhibition of gibberellin biosynthesis by nitrate in Gibberella fujikuroi. FEBS Lett. 413: 35- 39 https://doi.org/10.1016/S0014-5793(97)00872-7
  41. Suh, S.-J. and J.-G. Kim. 2002. Secondary structure and phylogenetic implications of ITS2 in the genus Tricholoma. J. Microbiol. Biotechnol. 12: 130- 136
  42. Tudzynski, B. 1999. Biosynthesis of gibberellins in Gibberellia fujikuroi: Biomolecular aspects. Appl. Microbiol. Biotechnol. 52: 298- 310 https://doi.org/10.1007/s002530051524
  43. Tudzynski, B. and K. Holter. 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: Evidence for a gene cluster. Fungal Genetics Biology 25: 157- 170 https://doi.org/10.1006/fgbi.1998.1095
  44. Tudzynski, B., M. Mihlan, M. Cecilia Rojas, P. Linnemannstons, P. Gaskin, and P. Hedden. 2003. Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi: Ees and P450-3 encode GA4 desaturase and the 13-hydroxylase, respectively. J. Biol. Chem. 278: 28635- 28643 https://doi.org/10.1074/jbc.M301927200
  45. Vazquez, M. M., S. Cesar, R. Azcon, and J. M. Barea. 2000. Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl. Soil Ecology 15: 261- 272 https://doi.org/10.1016/S0929-1393(00)00075-5
  46. Vierheilig, H., J. M. Garcia-Garrido, U. Wyss, and Y. Piche. 2000. Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi. Soil Biol. Biochem. 32: 589- 595 https://doi.org/10.1016/S0038-0717(99)00155-8
  47. Yamaguchi, S. and Y. Kamiya. 2000. Gibberellin biosynthesis: Its regulation by endogenous and environmental signal. Plant Cell Physiol. 41: 251- 275 https://doi.org/10.1093/pcp/41.3.251