New nirS-Harboring Denitrifying Bacteria Isolated from Activated Sludge and Their Denitrifying Functions in Various Cultures

  • LEE, SOO-YOUN (School of Life Sciences and Biotechnology, Korea University) ;
  • LEE, SANG-HYON (School of Life Sciences and Biotechnology, Korea University) ;
  • PARK, YONG-KEUN (School of Life Sciences and Biotechnology, Korea University)
  • Published : 2005.02.01

Abstract

By using PCR with nirS gene primers, three nirSharboring denitrifying bacteria (strain N6, strain N23, and strain R13) were newly isolated from activated sludge of a weak municipal wastewater treatment plant. Small-subunit rRNA gene-based analysis indicated that strain N6, strain N23, and strain R13 were closely related to Arthrobacter sp.,Staphylococcus sp., and Bacillus sp., respectively. In an attempt to identify their roles in biological nitrate and nitrite removal from sewage, we investigated their specific denitrification rates (SDNRs) for $NO_-^3$ - and $NO_-^2$ - in various cultures. All purecultures of each isolated nirS-harboring bacterial strain could remove $NO_-^3$ - and $NO_-^2$ - simultaneously in high efficiency, and the carbon requirements for $NO_-^3$ - removal of strain N6 and strain R13 were effectively low at 3.1 and 4.1 g COD/g $NO_3N$, respectively. In the case of mix-cultures of the strains (N6+N23, N6+R13, N23+R13, and N6+N23+R13), their SDNRs for $NO_-^3$ - were also effective, and their carbon requirements for $NO_-^3$ - removal were also effective at 3.0- 3.8 g COD/g NO3N. However, all tested mix-cultures accumulated $NO_-^2$ - in their culture media. On the other hand, the continuous culture of activated sludge mixed with strain N6 showed no significant increase of $NO_-^3$ - removal in comparison with strain N6's pure culture. These results suggest that nitrate and nitrite removal in biological wastewater treatment might be dependent on complicated bacterial interactions, including several effective denitrifying bacteria isolated in this study, rather than the specific bacterial types present and the number of bacterial types in activated sludge.

Keywords

References

  1. Ahn, I. S., M. W. Kim, H. J. La, K. M. Choi, and J. C. Kwon. 2003. Bacterial community composition of activated sludge relative to type end efficiency of municipal wastewater treatment plants. J. Microbiol. Biotechnol. 13: 15- 21
  2. Almeida, J. S, M. A. M. Reis, and M. J. T. Carrondo. 1995. Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens. Biotechnol. Bioeng. 46: 476- 484 https://doi.org/10.1002/bit.260460512
  3. APHA, AWWA, WPCF. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association/American Water Work Association/Water Pollution Control Federation. Washington DC, U.S.A.
  4. Both, H., G. Jost, M. Schloter, B. B. Ward, and K. P. Witzel. 2000. Molecular analysis of ammonia oxidation and denitrification in natural environments. FEMS Microbiol. Rev. 24: 673- 690 https://doi.org/10.1111/j.1574-6976.2000.tb00566.x
  5. Braker, G., A. Fesefeldt, and K. P. Witzel. 1998. Development of PCR primer systems for amplification of nitrite reductase gene (nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol. 64: 3769-3775
  6. Braker, G., J. Zhou, L. Wu, A. H. Devol, and J. M. Tiedje. 2000. Nitrite reductase gene (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl. Environ. Microbiol. 66: 2096-2104 https://doi.org/10.1128/AEM.66.5.2096-2104.2000
  7. Brosius, J., J. L. Palmer, H. P. Kennedy, and H. F. Noller. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA 75: 4801-4805 https://doi.org/10.1073/pnas.75.10.4801
  8. Choi, E. S., Z. Yun, J. W. Lee, and S. O. Chun. 1999. The denitrification of weak sewage at various temperatures, pp. 23- 28. 7th IAWQ Asia-Pacific Regional Conference Proceedings
  9. Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662- 1669
  10. EPA. 1993. Manual Nitrogen Control. Environment Protection Agency, U.S.A
  11. Etchebehere, C., I. Errazquin, E. Brrandeguy, P. Dabert, R. Moletta, and L. Muxi. 2001. Evaluation of the denitrifying microbiota of anoxic reactors. FEMS Microbiol. Ecol. 35: 259-265 https://doi.org/10.1111/j.1574-6941.2001.tb00811.x
  12. Fossing, H., V. A. Gallardo, B. B. Jorgensen, M. Muttel, L. P. Nielsen, H. Schulz, D. E. Canfield, S. Foster, R. N. Glud, J. K Gundersen, J. Kuver, N. B. Ramsing, A. Teske, B. Thamdrup, and O. Ulloa. 1996. Concentration and transport of nitrate by the mat-forming sulfur bacterium Thioploca. Nature 374: 713-715 https://doi.org/10.1038/374713a0
  13. Geoffrey, B. and J. M. Tiedje. 1992. Isolation and characterization of a nitrite-reduction gene and its use as a probe for de nitrifying bacteria. Appl. Environ. Microbiol. 58: 374- 384
  14. Hallin, S. and P. Lindgreen. 1999. PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl. Environ. Microbiol. 65: 1652- 1657
  15. Hutchins, S. R. 1991. Biodegradation of monoaromatic hydrocarbons by aquifer microorganism using oxygen, nitrate, or nitrous oxide as the terminal electron acceptor. Appl. Environ. Microbiol. 57: 2403- 2407
  16. Kim, J. K, S. K. Kim, and S. H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756- 762
  17. Knowles, R. 1982. Denitrification. Microbiol. Rev. 46: 43-70
  18. Koshland, D. E. 1992. The molecule of the year. Science 258: 1861 https://doi.org/10.1126/science.1470903
  19. Krishnamachari, S. and W. W. Clarkson. 1993. Nitrite accumulation in the effluents from high-strength denitrification of industrial wastewater, pp. 383-392. 47th Purdue Industrial Waste Conference Proceedings. Lewis Publishers, Inc., Chelsea, MI, U.S.A
  20. Lee, J. W, E. S. Choi, K. I. Gil, H. W. Lee, S. H. Lee, S. Y. Lee, and Y. K. Park. 2001. Removal behavior of biological nitrogen and phosphorus and prediction of microbial community composition with its function in an anaerobic-anoxic system from weak sewage. J. Microbiol. Biotechnol. 11: 994- 1001
  21. Maidak, B. L., J. R. Cole, C. T. Parker, G. M. Garrity, N. Larsen, B. Li, T. G. Lilburn, M. J. McCaughey, G. J. Olsen, R. Overbeek, S. Pramanik, T. M. Schmidt, J. M. Tiedje, and C. R. Woese. 1999. A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res. 27: 171- 173 https://doi.org/10.1093/nar/27.1.171
  22. Ng, W. J., S. L. Ong, and J. Y. Hu. 2001. Denitrifying phosphorus removal by anaerobic/anoxic sequencing batch reactor. Wat. Sci. Tech. 43: 139-146
  23. Park, D. H. and Y. K. Park. 2001. Bioelectrochemical denitrification by Pseudomonas sp. or anaerobic bacterial consortium. J. Microbiol. Biotechnol. 11: 406-411
  24. Park, E. J., J. K. Seo, J. K. Kim, K. H. Suh, and S. K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414
  25. Park, J. B., H. W. Lee, S. Y. Lee, J. O. Lee, I. S. Bang, E. S. Choi, D. H. Park, and Y. K. Park. 2002. Microbial community analysis of 5-stage biological nutrient removal process with step feed system. J. Microbiol. Biotechnol. 12: 929- 935
  26. Pinar, G., J. M. Oliva, L. Sanchez-Barbero, V. Calvo, and J. L. Ramos. 1998. Removal of nitrate from industrial wastewaters in a pilot plant by nitrate-tolerant Klebsiella oxytoca CECT 4460 and Arthrobacter globiformis CECT 4500. Biotechnol. Bioeng. 58: 510- 514 https://doi.org/10.1002/(SICI)1097-0290(19980605)58:5<510::AID-BIT7>3.0.CO;2-G
  27. Zumft, W. G. 1992. The denitrifying prokaryotes, pp. 554-582. In A. Balows, H. G. Tniper, M. Dworkin, W. Harder, and K.-H. Schleifer (eds.), The Prokaryotes, 2nd edition. Springer- Verlag, Berlin
  28. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61: 533-616
  29. Wilderer, P. A., W. L. Jones, and U. Dau. 1987. Competition in denitrification system affecting reduction rate and accumulation of nitrite. Wat. Res. 21: 239- 245 https://doi.org/10.1016/0043-1354(87)90056-X