비드형 이온교환체의 합성 및 담배 주류연 중 카보닐 화합물의 선택 흡착 특성

Synthesis of Bead Type lon Exchangers and Selective Adsorption Properties of Carbonyl Compounds in Cigarette Mainstream Smoke

  • 이존태 (KT&G 중앙연구원 분석센터) ;
  • 박진원 (KT&G 중앙연구원 분석센터) ;
  • 이문수 (KT&G 중앙연구원 분석센터) ;
  • 황건중 (KT&G 중앙연구원 분석센터) ;
  • 황택성 (충남대학교 공과대학 화학공학과)
  • 발행 : 2005.01.01

초록

담배 주류연 중 카보닐 화합물의 감소를 위한 필터 물질로 비드 형상의 양이온 및 음이온교환체를 glycidylmethacrylate(GMA)와 d9ivinylbenzene(DVB)의 현탁중합에 의해 중합체를 합성한 후 설폰화 반응 및 아민화 반응에 의해 합성하였다. 합성한 이온교환체의 구조는 FT-IR/ATR을 이용하여 확인하였으며 SEM을 이용하여 주류연 흡착에 따른 이온교환체의 표면을 관찰하였다. 또한 이온교환용량, 관능화율 및 담배 주류연 중 카보닐 화합물의 흡착 특성을 확인하였다. 관능화율과 이온교환용량은 공단량체 중 DVB의 함량이 5 wt%에서 최대를 나타내었다. 이온교환체에 의한 담배 주류연 중 카보닐 흡착량은 카보닐기 내의 전자 편재화에 의한 음이온교환반응이 더 용이하여 음이온교환체에서 더 높게 나타났으며, 수분 존재 시 더 많은 흡착량을 나타내었다. 또한 짧은 접촉 시간에서도 높은 흡착량을 가지고 있어 궐련 필터의 적용 가능성을 확인할 수 있었다.

To use the filter materials for reduction of carbonyl compounds in cigarette mainstream smoke, the bead type cation and anion exchangers were synthesized by the suspension polymerization of GMA and DVB followed by the subsequent functionalization with sodium sulfite and diethylamine, respectively. FT-IR/ATR was used to characterize functionalized copolymer formation by sulfonation and amination, and the morphology change of ion exchangers according to the adsorption of cigarette mainstream smoke were observed by SEM. Ion exchange capacity, functionalization yield and adsorption properties of carbonyl compounds in cigarette mainstream smoke were investigated. The highest functionalization yields and ion exchange capacity were obtained at 5 wt% DVB content in co-monomer. The adsorption amount of carbonyl compounds in cigarette mainstream smoke of anion exchanger was higher than that of cation exchanger because of its electron delocalization in carbonyl group. The adsorption efficiency was increased in the presence of moisture. This results indicated that the anion exchanger was applicable for cigarette filter material because of its large ion exchange capacity and rapid ion exchange reaction.

키워드

참고문헌

  1. J. M. Lee, J. K. Suh, S. Y. Jeong, H. K. Jin, B. K. Park, C. H. Park, J. H. Park, and S. W. Kim, Kor. Res. Inst. Chem. Tech., WO 97 04, 865 (1997)
  2. W. M. Meier. J. Wild, and F. Scanlan, US Patent 5,727,573 (1998)
  3. W. M Meier and K. Siegmann, Micropor. Mesopor. Mat., 33, 307 (1999)
  4. J. H. Zhu, B. Shen, Y. Wang, and D. Yan, Chin. Sci. Bull., 46, 705 (2001)
  5. D. Hoffmann, I. Hoffmann, and K. EI-Bayoumy, Chem. Res. Toxico., 14, 767 (2001)
  6. C. J. Smith, and C.Hansch, Food Chem. Toxicol., 38, 637 (2000)
  7. C. J. Smith, T. A. Perfetti, R. Garg, and C. Hansch, Food Chem. Toxicol., 41, 807 (2003)
  8. D. Hoffmann, in Toxicity Testing Plan, US Consumer Product Safety Committee, Washington, DC., 1993
  9. Advancing Knowledge on Regulating Tohacco Products, World Health Organization, Geneva, Switzerland, 2001
  10. S. Budavari, Ed., The Merck Index, 12th ed., Merck & Co., Inc., Whitehouse Station, NJ (1996)
  11. W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-HilI, New York, 1999
  12. R. B. Baker, Smoke Chemistry, Blackwell Science, Oxford, 1999
  13. F. Helfferich, Ion Exchanger, McGraw-Hill Company, New-York, 1962
  14. A. M. Wachinski and J. E. Etzel, Environmental Ion Exchange ; Principles and Design, Lewis Publishers, New-York, ] 997
  15. T. S. Hwang, S. A. Lee, and M. J. Lee, Polymer(Korea), 25, 311 (2001)
  16. T. S. Hwang, J. W. Park, and Y. W. Rhee, J. Ind. Eng. Chem., 10, 782 (2004)
  17. H. K. Kim, J. T. Lee, O. S. Yoon, and M. S. Rhee, J. Kor. Soc. Toba. Sci., 25,137 (2003)