열분해에 의한 내충격 폴리스티렌 해중합 생성물의 분포 특성

Product Distribution Characteristics of High-Impact Polystyrene Depolymerization by Pyrolysis

  • 이봉희 (충북대학교 공과대학 화학공학과) ;
  • 유홍정 (충북대학교 공과대학 화학공학과) ;
  • 김대수 (충북대학교 공과대학 화학공학과)
  • Lee, Bong-Hee (Department of Chemical Engineering, Chungbuk Nat'l Univ.) ;
  • Yu, Hong-Jeong (Department of Chemical Engineering, Chungbuk Nat'l Univ.) ;
  • Kim, Dae-Su (Department of Chemical Engineering, Chungbuk Nat'l Univ.)
  • 발행 : 2005.01.01

초록

폐플라스틱으로 수거되는 내충격 폴리스티렌의 액상연료로서의 재활용을 위해 열분해에 의한 HIPS 해중합 특성을 연구하였다. 열분해 온도 및 열분해 시간이 HIPS의 열분해에 미치는 영향을 조사하였다. HIPS의 열분해 반응 시작온도와 활성화에너지는 가열속도가 증가함에 따라 증가하였다. 전환율과 액체수율은 열분해 온도와 시간이 증가함에 따라 점진적으로 증가하였다. 열분해 과정에서 생성된 각각의 액체성분을 한국석유품질검사소 석유제품 품질기준에 기초하여 증류온도에 따라 가솔린, 등유, 경유, 중유로 분류하여 본 결과, 가솔린 > 중유 > 등유 > 경유 순이었다. 특히 가솔린 성분은 열분해된 HIPS의 51${\pm}$6 wt%를 차지하였다.

To recycle collected high-impact polystyrene (HIPS) wastes as liquid fuel, depolymerization characteristics of HIPS by pyrolysis was studied. The effects of temperature and time on the pyrolysis of HIPS were investigated. The depolymerization temperature and activation energy of HIPS pyrolysis increased with increasing heating rate. In general, conversion and liquid yield gradually increased with pyrolysis temperature and pyrolysis time. Each liquid product formed during pyrolysis was classified into gasoline, kerosene, light oil and heavy oil according to the distillation temperature based on the petroleum product quality standard of Korea Petroleum Quality Inspection Institute. As a result, the amount of liquid products produced during HIPS pyrolysis was in the order of gasoline》heavy oil〉kerosene〉light oil. Especially 51${\pm}$6 wt% of HIPS treated was obtained as gasoline.

키워드

참고문헌

  1. J. Hayashi, T. Nakahara, K. Kusakabe, and S. Morooka, Fuel Processing Technology, 55, 265 (1998)
  2. M. V. S. Murty, E. A. Grulke, and D. Bhattacharyya, Polym. Deg. Stab., 61, 421 (1998)
  3. H. J. Yu, S. Y. Park, and B. H. Lee, J. Kor. Oil Chem. Soc., 19, 198 (2002)
  4. H. J. Yu, S. Y. Park, and B. H. Lee, J. Kor. Oil Chem. Soc., 19, 258 (2002)
  5. K. H. Kim and K. O. Ryu, J. Kor. Solid Wastes Eng. Soc., 13, 329 (1996)
  6. S. J. Park, G. Y. Heo, and J. R. Lee, Polymer( Korea), 26, 344 (2002)
  7. D. Mathew, C. P. R. Nair, K. Krishnan, and K. N. Ninan, Polym. Sci., Polym. Chem., 37,1103 (1999)
  8. D. A. Anderson and E. S. Freeman, J. Polym. Sci., 54, 253 (1961)
  9. H. H. G. Jellinek and M. D. Luh, J. Phys. Chem., 70, 3672 (1966)
  10. B. V. Kokta, J. L. Valada, and W. N. Martin, J. Appl. Polym. Sci., 1, 17 (1976)
  11. A. Marcilla and M. Beltran, Polym. Deg. Stab., 50, 117 (1995)
  12. R. Miranda, J. Yang, C. Roy, and C. Vasile, Polym. Deg. Stab., 72, 469 (2001) https://doi.org/10.1016/S0141-3910(00)00160-9
  13. T. H. Risby, J. A. Yergey, and J. J. Scocca, Anal. Chem., 54, 2228 (1982)