Kinetics on the Synthesis of Poly(caprolactone diol) and Aliphatic Lsocyanate by FTIR Spectroscopy

FTIR을 이용한 폴리(카프로락톤 다이올)과 지방족 이소시아네이트의 반응속도 연구

  • Kang, Suk-Hwan (School of Chemical Engineering, Chungnam National University) ;
  • Yang, Yun-Kyu (School of Chemical Engineering, Chungnam National University) ;
  • Kwak, Noh-Seok (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yun-Uk (Central Research Lab., Aekyung Industrial Co.) ;
  • Hwang, Taek-Sung (School of Chemical Engineering, Chungnam National University)
  • 강석환 (충남대학교 화학공학과) ;
  • 양윤규 (충남대학교 화학공학과) ;
  • 곽노석 (충남대학교 화학공학과) ;
  • 강윤욱 ((주)애경산업 중앙연구소) ;
  • 황택성 (충남대학교 화학공학과)
  • Published : 2005.01.01

Abstract

Kinetic study of a reaction between poly(caprolactone diol) and aliphatic isocyanate was investigated by FTIR spectroscopy. The reaction rate was obtained from analyzing the absorbance change of NCO peak (2265 $cm^{-1}$) in series IR spectra. In the results, the overall reaction between PCL and isocyanate conformed to the simple second-order law, and the rate constant increases with increasing reaction temperature. The activation energies obtained from the evaluation of kinetic data were 25.4∼30.9 kJ/mol for hexamethylene diisocyanate and 16.8∼22.1 kJ/mol for cyclohexylmethane diisocyanate, respectively.

FTIR을 이용하여 폴리(카프로락톤 다이올)과 지방족 이소시아네이트간의 반응속도에 관한 연구를 수행하였다. NCO 피크(2265 $cm^{-1}$)의 흡광도 변화를 통하여 반응속도를 해석하였다. 그 결과, 폴리(카프로락톤 다이올)과 이소시아네이트간의 반응은 전체적으로 단순 2차 반응속도법과 일치함이 확인되었고, 반응온도의 증가에 따라 속도 상수는 증가하였다. 반응속도 상수로부터 구한 활성화에너지는 hexamethylene diisocyanate의 경우 25.4~30.9 kJ/mol, cyclohexylmethane diisocyanate의 경우 16.8~22.1 kJ/mol로 각각 나타났다.

Keywords

References

  1. D. J. David and H. B. Staley, Analytical Chemistry of Polyurethnne, Wiley-Interscience, New York, Vol 1. p 85 (1969)
  2. S. H. Choi, Polymer Science and Technology, 10, 621 (1999)
  3. T. Y. Lee, H. S. Lee, and S. S. Won, Polymer Science and Technology, 10, 597 (1999)
  4. D. S. Kim, Journal of the Korean Fiber Society, 25, 56 (1988)
  5. H. M. Jeong, B. K. Kim, and Y. J. Choi, Polymer, 41, 1849 (2000)
  6. T. Takahashi, N. Hayashi, and S. Hayashi, J. AppL Polym. Sci., 60, 1061 (1996)
  7. H. C. Jung, S. J. Kang, W. N. Kim, S. B. Kim, Y. B. Lee, and S. H. Hong, Journal of the Korean Institute of Gas, 2, 29 (1998)
  8. S. M. Kim and T. S. Hwang, Polymer(Korea), in press (2004)
  9. M. J. Elwell, A. J. Ryan, H. J. M. Grunbauer, and H. C. Van Lieshout, Polymer, 37, 1353 (1996)
  10. N. Cordeiro, M. N. Belgacem, A. Gandini, and C. P. Neto, Ind. Crop. Prod., 6, 163 (1997)
  11. S. Ajithkumar, S. S. Kansara, and N. K. Patel, Eur. Polym. J., 34, 1273-1276 (1998) https://doi.org/10.1016/S0014-3057(97)00270-X
  12. X. Tassel, D. Barbryb, and L. Tighzerta, Eur. Polym. J., 36, 1745 (2000)
  13. C. Pavier and A. Gandini, Eur. Polym. J., 36, 1653 (2000)
  14. J. K. Kim, H. K. Cho, S. T. Noh, and S. C. Kang, J. Korean Ind. Eng. Chem., 13, 815 (2002)
  15. S. Parnell, K. Min, and M. Cakmak, Polymer, 44, 5137 (2003)
  16. P. N. Lan, S. Corneillie, E. Schacht, M. Davies, and A. Shard, Biomaterials, 17, 2273 (1996)