Role of Disulfide Bond of Arylsulfate Sulfotransferase in the Catalytic Activity

  • Kwon, Ae-Ran (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University) ;
  • Choi, Eung-Chil (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
  • 발행 : 2005.01.01

초록

Bacterial arylsulfate sulfotransferase (ASST) catalyzes the transfer of sulfate group from a phenyl sulfate ester to a phenolic acceptor. The promoter region and the transcripti on start sites of Enterobacter amnigenus astA have been determined by primer extension analysis. Northern blot analysis resolved two mRNA species with lengths of 3.3 and 2.0 kb, which correspond to the distances between the transcriptional initiation sites and the two inverted repeat sequences (IRSs). By length, the 3.3 kb RNA could comprise the three-gene (astA with dsbA and dsbB) operon. ASST has three highly conserved cysteine residues. Reducing and non-reducing SDS-PAGE and activity staining showed that disulfide bond is needed for the activity of the enzyme. To identify the cysteine residues responsible for the disulfide bond formation, a series of Cys to Ser mutants has been constructed and the enzymatic activity was measured. Based on the results, we assumed that the first cysteine (Cys349) might be involved in disulfide bond mainly with the second cysteine (Cys445) and result in active conformation.

키워드

참고문헌

  1. Baek, M. C., Kim, S. K., Kim, D. H., Kim. B. K., and Choi, E. C., Cloning and sequencing of the Klebsiella K-36 astA gene, encoding an arylsulfate sulfotransferase. Microbiol. Immunol., 40, 531-537 (1996) https://doi.org/10.1111/j.1348-0421.1996.tb01105.x
  2. Bardwell, J. C., McGovern, K., and Beckwith, J., Identification of a protein required for disulfide bond formation in vivo. Cell, 67, 581-589 (1991) https://doi.org/10.1016/0092-8674(91)90532-4
  3. Chai, C. L. L. and Lowe, G., The mechanism and stereochemical course of sulfuryl transfer catalyzed by the acryl sulfotransferase from Eubacterium A-44. Bioorg. Chem., 20, 181-188 (1992) https://doi.org/10.1016/0045-2068(92)90011-Q
  4. Dodgson, K. S. and Tudball, N., The metabolite of the sulfate group of potassium p-nitrophenyl[35S] sulfate. Biochem. J., 74, 154-159 (1960) https://doi.org/10.1042/bj0740154
  5. Feinberg, A. P. and Vogelstein, B., A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem., 132, 6-13 (1983) https://doi.org/10.1016/0003-2697(83)90418-9
  6. Harley, C. B. and Reynolds, R. P., Analysis of E. coli promoter sequences. Nucleic Acids Res., 15, 2343-2361 (1987) https://doi.org/10.1093/nar/15.5.2343
  7. Kahnert, A. and Kertesz M. A., Characterization of a sulfurregulated oxygenative alkylsulfatase from Pseudomonas putida S-313. J. Biol. Chem., 275, 31661-31667 (2000) https://doi.org/10.1074/jbc.M005820200
  8. Kang, J. W. Kwon, A. R., Kim, D. H., and Choi, E. C., Cloning and sequencing of the astA gene encoding arylsulfate sulfotransferase from Salmonella typhimurium. Bio. Pharm. Bull., 24, 570-574 (2001) https://doi.org/10.1248/bpb.24.570
  9. Kim, D. H., Kim, H. S., and Kobashi, K., Purification and characterization of novel sulfotransferase obtained from Klebsiella K-36, an intestinal bacterium of rat. J. Biochem., 112, 456-460 (1992) https://doi.org/10.1093/oxfordjournals.jbchem.a123921
  10. Kim, D. H. and Kobashi, K., The role of intestinal flora in metabolism of phenolic sulfate esters. Biochem. Pharmacol., 35, 3507-3510 (1986) https://doi.org/10.1016/0006-2952(86)90619-2
  11. Kim, D. H., Konishi, L., and Kobashi, K., Purification, characterization and reaction mechanism of novel arylsulfotransferase obtained from an anaerobic bacterium of human intestine. Biochem. Biophys. Acta, 872, 33-41 (1986) https://doi.org/10.1016/0167-4838(86)90144-5
  12. Kobashi, K., Fukaya, Y., Kim, D. H., Akao, T., and Takebe, S., A novel type of arylsulfotransferase obtained from an anaerobic bacterium of human intestine. Arch. Biochem. Biophys., 245, 537-539 (1986) https://doi.org/10.1016/0003-9861(86)90247-X
  13. Kunkel, T. A., Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. U.S.A., 82, 488-492 (1985) https://doi.org/10.1073/pnas.82.2.488
  14. Kunkel, T. A., Roberts J. D., and Zakour R. A., Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol., 154, 367-382 (1987) https://doi.org/10.1016/0076-6879(87)54085-X
  15. Kwon, A. R., Oh, T. G., Kim, D. H., and Choi, E. C., Molecular cloning of the arylsulfate sulfotransferase gene and characterization of its product from Enterobacter amnigenus AR-37. Protein Expression Purif., 17, 366-372 (1999) https://doi.org/10.1006/prep.1999.1129
  16. Kwon, A. R., Yun, H. J., and Choi, E. C., Kinetic mechanism and identification of the active site tyrosine residue in Enterobacter amnigenus arylsylfate sulfotrasferase. Biochem. Biophys. Res. Commun., 285, 526-529 (2001) https://doi.org/10.1006/bbrc.2001.5185
  17. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680- 685 (1970) https://doi.org/10.1038/227680a0
  18. Lee, N. S., Kim, B. T., Kim, D. H., and Kobashi, K., Purification and reaction mechanism of arylsulfate sulfotransferase from Haemophilus K-12, a mouse intestinal bacterium. J. Biochem., 118, 796-801 (1995) https://doi.org/10.1093/oxfordjournals.jbchem.a124982
  19. Michael, H. M. and Bernard, L. H., Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. J. Biol. Chem., 3, 1889-1893 (1964)
  20. Missiakas, D., C., Georgopoulos, and Raina S., Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc. Natl. Acad. Sci. U.S.A., 90, 7084-7088 (1993) https://doi.org/10.1073/pnas.90.15.7084
  21. Neuhoff, V., Arold, N., Taube, D., and Ehrhardt, W., Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis, 9, 255-262 (1988) https://doi.org/10.1002/elps.1150090603
  22. Reeder, T. and Schleif, R., AraC protein can activate transcription from only one position and when pointed in only one direction. J. Mol. Biol., 231, 205-218 (1993) https://doi.org/10.1006/jmbi.1993.1276
  23. Roy, A. B., Sulfotransferases. In Sulfation of Drugs and Related Compounds (Mulder, G. J., Ed.), pp. 131-185, CRC Press, Boca Raton, FL (1981)
  24. Sambrook, J., Fritsch, E. F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. (1989)
  25. Sanger, F., Nicklen, S., and Coulson, A. R., DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A., 74, 5463-5467 (1977) https://doi.org/10.1073/pnas.74.12.5463
  26. Sekura, R. D., Duffel, M. W., and Jakoby, W. B., Arylsulfotransferases. Methods Enzymol., 77, 197-206 (1981) https://doi.org/10.1016/S0076-6879(81)77026-5
  27. von Heijne, G. and Abrahmsen, L., Species-specific variation in signal peptide design. Implications for protein secretion in foreign hosts. FEABS Lett., 244, 439-446 (1989) https://doi.org/10.1016/0014-5793(89)80579-4
  28. Yao, R. and Guerry, P., Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfate production in Campylobacter jejuni. J. Bacteriol., 178, 3335-3338 (1996) https://doi.org/10.1128/jb.178.11.3335-3338.1996