Ergosterol Peroxide from Flowers of Erigeron annuus L.as an Anti-Atherosclerosis Agent

  • Kim, Dong-Hyun (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Jung, Sung-Je (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Chung, In-Sik (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Lee, Youn-Hyung (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Kim, Dae-Keun (Department of Pharmacy, Woosuk University) ;
  • Kim, Sung-Hoon (Graduate School of East-West Medical Science, Kyung-Hee University) ;
  • Kwon, Byoung-Mog (Korea Research Institute of Bioscience and Biotechnology) ;
  • Jeong, Tae-Sook (Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Mi-Hyun (Erom Life Co. Ltd.) ;
  • Seoung, Nak-Sul (National Institute of Crop Science, RDA) ;
  • Baek, Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
  • Published : 2005.01.01

Abstract

Flowers of Erigeron annuus L. were extracted with 80% aqueous MeOH, and the concentrated extract was partitioned with EtOAc, n-BuOH, and H$_2$O. Repeated silica gel and OD S column chromatography of the EtOAc fraction led to the isolation of a sterol, through activityguided fractionation, using ACAT inhibitory activity measurements. From the physico-chemical data, including NMR, MS, and IR, the chemical structure of the compound was determined to be an ergosterol peroxide (1), which has been isolated for the first time from this plant. This compound exhibited hACAT-1 and Lp-PLA$_2$ inhibitory effects, with inhibitory values of 51.6 ${\pm}$ 0.9 and 51 .7 ${\pm}$ 1.2%, at a treatment concentration of 0.23 mM.

Keywords

References

  1. Accad, M., Smith, S. J., Newland, D. L., Sanan, D. A., King, L. E., Jr., Linton, M. F., Fazio, S., and Farese, R., Jr., Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J. Clin. Invest., 105, 711-719 (2000) https://doi.org/10.1172/JCI9021
  2. Anderson, R. A., Joyce, C., Davis, M., Reagan, J. W., Clark, M., Shelness, G. S., and Rudel, L. L., Identification of a form of acyl-CoA:cholesterol acyltransferase specific to liver and intestine in nonhuman primates. J. Biol. Chem., 273, 26747- 26754 (1998) https://doi.org/10.1074/jbc.273.41.26747
  3. Blackie, J. A., Bloomer, J. C., Brown, M. J. B., Cheng, H. Y., Hammond, B., Hickey, D. M. B., Ife, R. J., Leach, C. A., Lewis, V. A., Macphee, C. H., Milliner, K. J., Moores, K. E., Pinto, I. L., Smith, S. A., Stansfield, I. G., Stanway, S. J., Taylor, M. A., and Theobald, C. J., The identification of clinical candidate SB-480848: a potent inhibitor of lipoprotein-associated phospholipase A2. Bioorg. Med. Chem. Lett., 13, 1067-1070 (2003) https://doi.org/10.1016/S0960-894X(03)00058-1
  4. Bloomer, J. C., Boyd, H. F., Hickey, D. M. B., Ife, R. J., Leach, C. A., Macphee, C. H., Milliner, K. J., Pinto, I. L., Rawlings, D. A., Smith, S. A., Stansfield, I. G., Stanway, S. J., Taylor, M. A., Theobald, C. J., and Whittaker, C. M., 1-(Arylpiperazinylamidoalkyl)- pyrimidones: orally active inhibitors of lipoproteinassociated phospholipase $A_{2}$. Bioorg. Med. Chem. Lett., 11, 1925-1929 (2001) https://doi.org/10.1016/S0960-894X(01)00346-8
  5. Bok, J. W., Lermer, L., Chilton, J., Klingeman, H. G., and Twers, G. H. N., Antitumor sterols from the mycelia of Cordyceps sinensis. Phytochemistry, 51, 891-898 (1999) https://doi.org/10.1016/S0031-9422(99)00128-4
  6. Brecher, P. and Chan, C. T., Properties of acyl-CoA:Cholesterol O-acyltransferase in aortic microsomes from atherosclerotic rabbits. Biochem. Biophys. Acta, 617, 458-471 (1980) https://doi.org/10.1016/0005-2760(80)90012-0
  7. Brown, M. S., Dana, S. E., and Goldstein, J. L., Cholsterol ester formation in cultured human fibroblasts. J. Biol. Chem., 250, 4025-4027 (1975)
  8. Buhman, K. K., Accad, M., Novak, S., Choi, R. S., Wong, J. S., Hamilton, R. L., Turley, S., and Farese, R. V., Jr., Resistance to diet-induced hypercholesterolemia and gallstone formation in ACAT2-deficient mice. Nat. Med., 6, 1341-1347 (2000) https://doi.org/10.1038/82153
  9. Cases, S., Novak, S., Zheng, Y., Myers, H. M., Lear, S. R., Sande, E., Welch, C. B., Lusis, A. J., Spancer, T. A., Krouse, B. R., Erickson, S. K., Jr., and Farese, R. V., Jr., ACAT-2, a second mammalian acyl-CoA: cholesterol acyltransferase. J. Biol. Chem., 273, 26755-26764 (1998) https://doi.org/10.1074/jbc.273.41.26755
  10. Dommick, M. A., Mcguire, E. J., Reindel, J. F., Bobrowski, W. F., Bocan, T. M., and Gough, A. W., Subacute Toxicity of a Novel Inhibitor of Acyl-CoA: Cholesterol Acyltransferase in Beagle Dogs. Fundam. Appl. Toxicol., 20, 217-224 (1993) https://doi.org/10.1006/faat.1993.1029
  11. Jeong, T. S., Kim, S. U., Son, K. H., Kwon, B. M., Kim, Y. K., Choi, M. U., and Bok, S. H., GERI-BP001 compounds, new inhibitors of acyl-CoA: Cholesterol acytransferase from Aspergillus fumigatus F37. J. Antibiot., 48, 751-756 (1995) https://doi.org/10.7164/antibiotics.48.751
  12. Jeong, T. S., Kim, J. R., Kim, K. S., Cho, K. H., Bae, K. H., and Lee, W. S., Inhibitory effects of multi-substituted benzylidenzethiazolidine- 2,4-diones on LDL oxidation. Bioorg. Med. Chem., 12, 4017-4023 (2004) https://doi.org/10.1016/j.bmc.2004.06.001
  13. Joyce, C. W., Shelness, G. S., Davis, M. A., Lee, R. G., Skinner, K., Anderson, R. A., and Rudel, L. L., ACAT1 and ACAT2 membrane topology segregates a serine residue essential for activity to opposite sides of the endopasmic reticulum membrane. Mol. Biol. Cell, 11, 3675-3687 (2000) https://doi.org/10.1091/mbc.11.11.3675
  14. Kim, Y. K., Tomoda, H., and Nishida, H., Pyripyropenes, novel inhibitors of acyl-CoA:Cholesterol acyltransferase produced by Aspergillus fumigatus. J. Antibiot., 47, 154-162 (1994) https://doi.org/10.7164/antibiotics.47.154
  15. Leach, C. A., Hickey, D. M. B., Ife, R. J., Macphee, C. H., Smith, S. A., and Tew, D. G., Lipoprotein-associated PLA2 inhibitiona novel, non-lipid lowering strategy for atherosclerosis therapy. Il Farmaco., 56, 45-50 (2001) https://doi.org/10.1016/S0014-827X(01)01011-4
  16. Lee, C. H., Jeong, T. S., Choi, Y. K., Hyun, B. W., Oh, G. T., Kim, E. H., Kim, J. R., Han, J. I., and Bok, S. H., Anti-atherogenic effect of citrus flavonoids, naringin and naringenin, associated with hepatic ACAT and aortic VCAM-1 and MCP-1 in high cholesterol-fed rabbits. Biochem. Biophys. Res. Commun., 284, 681-688 (2001) https://doi.org/10.1006/bbrc.2001.5001
  17. Macphee, C. H., Moores, K. E., Boyd, H. F., Dhanak, D., Ife, R. J., Leach, C. A., Leake, D. S., Milliner, K. J., Patterson, R. A., Suckling, K. E., Tew, D. G., and Hickey, D. M. B., Lipoproteinassociated phospholipase A2, platelet-activating factor acetylhydrolase, generates two bioactive products during the oxidation of low-density lipoprotein: use of a novel inhibitor. Biochem. J., 338, 479-487 (1999) https://doi.org/10.1042/0264-6021:3380479
  18. Matsuo, M., Hashimoto, M., Suzuki, J., Iwanami, K., Tomoi, M., and Shimomura, K., Difference between Normal and WHHL Rabbits in Susceptibility to the Adrenal Toxicity of an Acyl- CoA:Cholesterol Acyltransferase Inhibitor, FR145237. Toxicol. Appl. Pharmacol., 140, 387-392 (1996) https://doi.org/10.1006/taap.1996.0235
  19. Nam, K. S., Jo, Y. S., Kim, Y. H., Hyun, J. W., and Kim, H. W., Cytotoxic activities of acetoxyscirpenediol and ergosterol peroxide from Paecilomyces tenuipes. Life science, 69, 229- 237 (2001) https://doi.org/10.1016/S0024-3205(01)01125-0
  20. Oh, H. C., Kang, D. G., Lee, S. Y., and Lee, H. S., Angiotensin converting enzyme inhibitors from Cuscuta japonica choisy. J. Ethnopharmacol., 83, 105-108 (2002) https://doi.org/10.1016/S0378-8741(02)00216-7
  21. Oh, H. C., Lee, S. Y., Lee, H. S., Lee, D. H., Lee, S. Y., Chung, H. T., Kim, T. S., and Kwon, T. O., Germination inhibitory constituents from Erigeron annuus. Phytochemistry, 61, 175- 179 (2002) https://doi.org/10.1016/S0031-9422(02)00236-4
  22. Roth, B. D., Blankley, J., and Hoefle, M. L., Inhibitors of acyl- CoA:cholesterol acyltransferase. 1. Identification and structureactivity relationships of a novel series of fatty acid anilide hypocholesterolemic agents. J. Med. Chem., 35, 1609-1617 (1992) https://doi.org/10.1021/jm00087a016
  23. Rudel, L. L., Lee, R. G., and Cockman, T. L., Acyl coenzyme A:cholesterol acyltransferase types 1 and 2: structure and function in atherosclerosis. Curr. Opin. Lipidol., 12, 121-127 (2001) https://doi.org/10.1097/00041433-200104000-00005
  24. Sliskovic, D. R., Picard, J. A., and Krause, B. R., 3 ACAT inhibitors: The search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog. Med. Chem., 39, 121-171 (2002) https://doi.org/10.1016/S0079-6468(08)70070-5
  25. Stafforini, D. M., Elstad, M. R., Mclntyre, T. M., Zimmerman, G. A., and Prescott, S. M., Human macrophages secret plateletactivating factor acetylhydrolase. J. Biol. Chem., 265, 9682- 9687 (1990)
  26. Tew, D. G., Southan, C., Rice, S. Q. J., Lawrence, G. M. P., Li, H., Boyd, H. F., Moores, K., Gloger, I. S., and Macphee, C. H., Purification, properties, sequencing, and cloning of a lipoprotein-associated, serine-dependent phospholipase involved in the oxidative modification of low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol., 16, 591-597 (1996) https://doi.org/10.1161/01.ATV.16.4.591
  27. Thirkettle, J., Alvarez, E., Boyd, H., Brown, M., Diez, E., Hueso, J., Elson, S., Fulston, M., Gershater, C., Morata, M. L., Perez, P., Ready, S., Sanchez-Puelles, J. M., Sheridan, R., Stefanska, A., and Warr, S., SB-253514 and analogues; novel inhibitors of lipoprotein-associated phospholipase A2 produced by Pseudomonas fluorescens DSM 11579. I. Fermentation of producing strain, isolation and biological activity. J. Antibiot., 53, 664-669 (2000) https://doi.org/10.7164/antibiotics.53.664
  28. Yagyu, H., Kitamine, T., Osuga, J., Tozawa, R., Chen, Z., Kaji, Y., Oka, T., Perry, S., Tamura, Y., Ohashi, K., Okazaki, H., Yahagi, N., Shionori, F., Iizuka, Y., Harada, K., Shimano, H., Yamashita, H., Gotoda, T., Yamamda, N., and Ishibashi, S. J., Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J. Biol. Chem., 275, 21324-21330 (2000) https://doi.org/10.1074/jbc.M002541200