Effect of Soil Organic Matter on Arsenic Adsorption in the Hematite-Water Interface: Chemical Speciation Modeling and Adsorption Mechanism

비소의 적철석 표면 흡착에 토양유기물이 미치는 영향: 화학종 모델링과 흡착 기작

  • Ko, Il-Won (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Ju-Yong (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Gyeong-Ung (Arsenic Geoenvironment Laboratory (NRL), Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • An, Ju-Seong (Groundwater and Geothermal Resource Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Davis, A. P. (Department of Civil and Environmental Engineering and Maryland Water Resources Research Center, University of Maryland)
  • 고일원 (광주과학기술원 환경공학과 지질비소제어 국가지정연구실) ;
  • 김주용 (광주과학기술원 환경공학과 지질비소제어 국가지정연구실) ;
  • 김경웅 (광주과학기술원 환경공학과 지질비소제어 국가지정연구실) ;
  • 안주성 (한국지질자원연구원 지하수지열연구부) ;
  • Published : 2005.02.01

Abstract

This study was performed to investigate the effect of humic acid on the adsorption of arsenic onto hematite and its binding mechanism through the chemical speciation modeling in the binary system and the adsorption modeling in the ternary system. The complexation modeling of arsenic and humic acid was suitable for the binding model with the basis of the electrostatic repulsion and the effect of bridging metal. In comparison with the experimental adsorption data in the ternary system, the competitive adsorption model from the binary intrinsic equilibrium constants was consistent with the amount of arsenic adsorption. However, the additive rule showed the deviation of model in the opposite way of cationic heavy metals, because the reduced organic complexation of arsenic and the enhanced oxyanionic competition diminished the adsorption of arsenic. In terms of the reaction mechanism, the organic complex of arsenic, neutral As(III) and oxyanionic As(V) species were transported and adsorbed competitively to the hematite surface forming the inner-sphere complex in the presence of humic acid.

본 연구는 이성분계의 화학종 모델링과 삼성분계의 흡착 모델링으로부터 As(III)와 As(V)의 적철석 표면 흡착에 휴 믹산의 영향과 그 결합기작을 고찰하였다. 비소와 휴믹산의 유기 결합의 모델링은 음이온 사이의 정전기적인 반발력 과 비소의 유기 결합을 위한 결합금속의 영향을 고려한 결합 모델이 적합하였다. 삼성분계의 흡착 실험 자료와 비교 할 때 이성분계의 고유상수를 사용한 음이온 경쟁 모델이 음이온 경쟁에 따른 비소의 흡착량과 일치하였다. 반면, 비 소의 유기 결합량의 감소와 휴믹산과의 음이온 흡착경쟁이 흡착량을 감소시키기 때문에 단순합모델은 양이온 중금속 과는 반대로 모델의 편차를 보였다. 반응 기작의 관점에서 휴믹산의 공존하에 비소 유기결합 화학종과 중성화학종의 As(III) 및 음이온의 As(V)가 속착물을 형성하며, 경쟁적으로 적철석 표면으로 이동하여 흡착하게 된다.

Keywords

References

  1. 고일원, 이상우, 김주용, 김경웅, 이철효 (2004) 나노크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5 가의 제거. 지하수토양환경학회지, 9권, p. 63-69
  2. Christl, I. and Kretzschmar, R. (1999) Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochim. Cosmochim Acta, v. 63, p. 2929-2938 https://doi.org/10.1016/S0016-7037(99)00266-5
  3. Christl, I. and Kretzschmar, R. (2001) Interaction of copper and fulvic acid at the hematite-water interface. Geochim. Cosmochim Acta, v. 65, p. 3435-3442 https://doi.org/10.1016/S0016-7037(01)00695-0
  4. Dzombak, D.A. and Morel, F.M.M. (1990) Surface complexation modeling: Hydrous ferric oxide. John Wiley and Sons, New York
  5. Fendorf, S., Eick, M.J., Grossl, P. and Sparks, D.L. (1997) Arsenate and chromate retention on goethite: I. Surface structure. Environ. Sci. Technol., v. 31, p. 315-320 https://doi.org/10.1021/es950653t
  6. Goldberg, S. and Johnston, C.T. (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy and surface complexation modeling. J. Colloid Interface Sci., v. 234, p. 204-216 https://doi.org/10.1006/jcis.2000.7295
  7. Hsia, T.H., Lo, S.L. and Lin, C.F. (1992) As(V) adsorption on amorphous iron oxide: Triple layer modelling. Chemosphere, v. 25, p. 1825-1837 https://doi.org/10.1016/0045-6535(92)90022-J
  8. Kinniburgh, D.G., Milne, C.J., Benedetti, N.F., Pinheiro, J.P., Filius, J., Koopal, L.K. and Van Riemsdjik,W.H.(1996) Metal ion binding by humic acid: application of the NICA-Donnan Model. Environ. Sci. Technol., v. 30, p. 1687-1698 https://doi.org/10.1021/es950695h
  9. Ko, I.W., Kim, J.Y. and Kim, K.W. (2004a) Arsenic speciation and sorption kinetics in the As-hematitehumic acid system. Colloids and Surfaces A: Physicochem. Eng. Aspects., v. 234, p. 43-50 https://doi.org/10.1016/j.colsurfa.2003.12.001
  10. Ko, I.W., Kim, J.Y. and Kim, K.W. (2004b) Adsorption properties of soil humic and fulvic acid onto hematite. Chem. Spe. Bioavail., (in review)
  11. O'Reilly, S.E., Strawn, D.G. and Sparks, D.L. (2001) Residence time effects on arsenate adsorption/desorptionmechanisms on goethite. Soil Sci. Soc. Am. J., v. 65, p.67-77 https://doi.org/10.2136/sssaj2001.65167x
  12. Oliver, B.G., Beck, K.C. and Reuter, J.H. (1983) The contribution of humic substances to acidity of colored natural waters. Geochem. Cosmochim. Acta, v. 47, p.2031-2035 https://doi.org/10.1016/0016-7037(83)90218-1
  13. Redman, A.D., Macalady, D.L. and Ahmann, D. (2002) Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol., v. 36, p. 2889-2896 https://doi.org/10.1021/es0112801
  14. Stevenson, F.J. (1994) Humus chemistry: Genesis, composition, reactions. Wiley
  15. Sugimoto, T., Sakata, K. and Muramastu, A. (1992) Formation mechanism of monodisperse pseudo-hematite particles from condensed ferric hydroxide gel. J. Colloid Interface Sci., v. 159, p. 372-382 https://doi.org/10.1006/jcis.1993.1336
  16. Tipping, E. (1981) The adsorption of aquatic humic substances by iron oxides. Geochim. Cosmochim. Acta. v. 45, p. 191-199 https://doi.org/10.1016/0016-7037(81)90162-9
  17. Vermeer, A.W.P., W.H. van Riemsdijk, and L.K. Koopal. (1998) Adsorption of humic acid to mineral particles. 1. Specific and electrostatic interactions. Langmuir. v. 14, p. 2810-2819 https://doi.org/10.1021/la970624r
  18. Waychunas, G.A., Rea, B.A., Fuller, C.C. and Davis, J.A. (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta, v. 57, p. 2251-2269 https://doi.org/10.1016/0016-7037(93)90567-G