Investigation of xV₂O₅-B₂O₃ and xV₂O₅-B₂O₃-yNa₂O Glasses by ¹¹B MAS NMR Sunha Kim¹, Oc Hee Han^{1,*}, Seung Ki Song², and Jae Pil Kang² ¹Analysis Research Division, Daegu Center, Korea Basic Science Institute Daegu, 702-701, Republic of Korea ²Department of Physics, Myong Ji University Youngin, 449-728, Republic of Korea *Received March 29, 2005 **Abstract:** ¹¹B MAS NMR spectra of binary glass system xV_2O_5 B_2O_3 and ternary glass system xV_2O_5 - B_2O_3 - yNa_2O ($x = V_2O_5$ mol%/ B_2O_3 mol%, $y = Na_2O$ mol%/ B_2O_3 mol%) were acquired. BO_3 units are dominant components in the spectra of xV_2O_5 - B_2O_3 glass systems while both BO_3 and BO_4 units appear in comparable amounts in the spectra of xV_2O_5 - B_2O_3 - yNa_2O glass systems. More BO_3 units were monitored for higher V_2O_5 contents while more BO_4 units for higher Na_2O contents. Quadrupole parameters such as e^2qQ and q obtained from spectral simulation indicate that e^2qQ has a maximum value at x = y = 1 and q decreases and increases as x = y = 1 or y = 1 and y = 1 and y = 1 opposite roles in the ternary glasses. Keywords: 11B NMR, ternary glass, BO₃, BO₄ ### INTRODUCTION Oxide glass is also called as network-forming oxide since it forms random networks in 3-dimension. Representative network-forming oxides are B₂O₃, SiO₂, GeO₂¹. Since the report by Denton et al. that oxide glass with transition metal ions has semiconducting properties², it was discovered that the conduction in the oxide glass is by electron rather than ions^{3,4}. V₂O₅ was known as a good glass former to produce homogeneous glass⁵. ^{*} To whom correspondence should be addressed. E-mail: ohhan@kbsi.re.kr Nuclear Magnetic Resonance (NMR) has been excellent to probe local structures at boron sites in glass samples. However, ¹¹B is a quadrupole nucleus with spin number of 3/2 bringing out broad line widths. This low spectral resolution results in high uncertainties in measuring quadrupole parameters such as quadrupole coupling constant (e²qQ) and asymmetry parameter (η) as well as chemical shift. Thus we obtained relative intensities of BO₄ and BO₃ units in addition to quadrupole parameters by employing Magic Angle Spinning (MAS). e²qQ represents the maximum magnitude of electric field gradients at the site of observed nuclei while η does the deviation of the electric field gradient at the site from axial symmetry in the principal axis system. 11 B MAS NMR spectra of binary glass system xV_2O_5 - B_2O_3 and Na_2O added ternary glass system xV_2O_5 - B_2O_3 - yNa_2O were acquired. From the spectrum simulation, variation of quadrupole parameters as well as relative intensities of BO_4 and BO_3 units as a function of x and y were studied. Present work can deepen our understanding of local structures in glass by characterizing local environment around boron sites in glass. #### **EXPERIMENTAL** ## Materials Ternary glass samples were prepared with B_2O_3 as a glass former, V_2O_5 as a transition metal ion unit, and Na_2O as an alkaline metal unit. 8 samples with different compositions are prepared as summarized in Table 1 where $x = V_2O_5$ mol%/ B_2O_3 mol% and $y = Na_2O$ mol%/ B_2O_3 mol%. Na_2CO_3 , H_3BO_3 , and V_2O reagents were purchased from Aldrich and appropriate amounts of the chemicals were well mixed and then dried in a vacuum oven at 150°C for 15 mins. Dried mixture samples were melted in Pt crucibles in an electric furnace (Linberg Co. Model 51333) at the temperature of $1000 \sim 1100$ °C. Melt was kept for 30 mins and rapidly quenched on stainless steel. Glass form was confirmed by XRD (DMAX, Japan). ## NMR Spectroscopy All the NMR experiments were carried out on a DSX 400 Instrument (Bruker Biospin GmbH, Germany) with a 9.4 Tesla wide-bore magnet at room temperature. Solid state ¹¹B NMR spectra were acquired with a CP-MAS probe equipped with 4 mm rotors. Typical sample spinning rate was 13 kHz and its stability was within ± 4 Hz. Solution 90° pulse length for ¹¹B was 4 μs and 1 μs pulse length and 20 s repetition delay were used for obtaining ¹¹B spectra. Chemical shift was referenced to an external 1 M aqueous H₃BO₃ solution. Spectral simulation was carried out with WINFIT program (Bruker Biospin GmbH, Germany). Powder patterns for central $(-1/2-\longleftrightarrow1/2)$ transitions of ^{11}B was applied for BO_3 sites to get e^2qQ and η while Gaussian/Lorentzian line shapes for BO_4 sites with high symmetries. #### RESULTS AND DISCUSSION In Fig. 1, representative ¹¹B MAS NMR spectra of ternary glass system xV_2O_5 - B_2O_3 - yNa_2O are shown. BO_4 units appear as relatively sharp peaks, on the other hand, BO_3 units show powder patterns governed by second order quadrupole interaction. For a binary system without Na_2O , BO_3 units are observed as a major component as expected from the previous study^{6.7} and e^2qQ and η of 2.49 MHz and 0.15, respectively, were obtained from spectral simulation. These values are characteristic of BO_3 units in plannar trigonal structures with three bridged oxygens^{7.8}. In contrast, in ternary xV_2O_5 - B_2O_3 - yNa_2O glasses, in comparable amounts of not only BO_3 units but also BO_4 units of a tetrahedral shape were detected. Relative populations of BO_4 and BO_3 units vary as a function of x or y as shown in Fig. 1. Quadrupole parameters as well as relative intensities of BO_4 and BO_3 units change as a function of x and y as shown in Table 1 and Fig. 2. In general, e^2qQ and η of the ternary samples are a little bigger than those of the binary samples. e^2qQ has a maximum at x=y=1 while η increases and decreases as x and y becomes bigger, respectively. This implies that both V_2O_5 and Na_2O start to weaken the gradient strength for x>1 but V_2O_5 and Na_2O distorts and improves, respectively, electric field gradient symmetry of BO_3 units. At the same time, relative **Fig. 1.** ¹¹B MAS NMR spectra of ternary xV₂O₅-B₂O₃-yNa₂O glasses with various x and y values. Simulation spectra are shown at the right side of each spectrum. **Table 1.** Summary of sample composition, quadrupole parameters of BO₃ unit, relative intensities of BO₃ and BO₄ units | xV_2O_5 - B_2O_3 - yNa_2O | | Quadrupole Parameters | | Relative Intensity | | |---------------------------------|---------|-------------------------|------|----------------------|----------------------| | | | e ² qQ (MHz) | η | BO ₃ unit | BO ₄ unit | | x = 0.5 | y = 0.5 | 2.55 | 0.20 | 65 | 35 | | x = 1.0 | | 2.50 | 0.26 | 63 | 37 | | x = 0.5 | y = 1.0 | 2.56 | 0.17 | 47 | 53 | | x = 1.0 | | 2.59 | 0.21 | 58 | 42 | | x = 1.5 | | 2.57 | 0.22 | 63 | 37 | | x = 2.0 | | 2.55. | 0.22 | 65 | 35 | | x = 1.0 | y = 1.5 | 2.56 | 0.18 | 50 | 50 | | x = 1.5 | | 2.50 | 0.11 | 59 | 41 | | x = 0.05 | y = 0 | 2.49 | 0.15 | 91.8 | 8.2 | | x = 0.42 | | 2.49 | 0.15 | 91.5 | 8.5 | intensities of BO_4 units were reduced for higher V_2O_5 concentration, which suggests that V_2O_5 inhibits transformation of BO_3 to BO_4 units. Overall bigger e^2qQ values for the ternary glass systems than the binary systems might be simply by more disordering due to more components. In general, relative intensities of BO_4 units grow for larger y. This indicates that V_2O_5 and Na_2O play opposite roles for relative population variation of BO_3 and BO_4 units in the glasses. Fig. 2. Plots of relative intensities of BO₃ and BO₄ units, η , and e^2qQ versus x or y. In summary, we acquired ¹¹B MAS spectra of xV_2O_5 - B_2O_3 - yNa_2O glasses with various compositions. By spectrum simulation, relative intensities of BO₃ and BO₄ units, e^2qQ and η for BO₃ units were obtained. The glasses without Na₂O have relatively small amounts of BO₄ units while comparable amounts of BO₃ and BO₄ units were observed in the samples with Na₂O. In the ternary glasses, more BO₃ units are detected for more V₂O₅ while more BO₄ units for more Na₂O. Bigger and smaller η values of BO₃ units were monitored with lower and higher contents of V₂O₅ and Na₂O, respectively, while e^2qQ has a maximum value at x = y = 1 for both V₂O₅ and Na₂O content variations. Thus in general, V₂O₅ and Na₂O play opposite roles in the glass systems. # Acknowledgments This work was partially supported by the Korea Research Council of Fundamental Science & Technology through grant PG2313 at KBSI. #### REFERENCES - 1. P. W. Mcmillan, "Glass-Ceramics", Academic Press, New York (1979) - 2. E. P. Denton, H. Rawson, and J. E. Stanworth, *Nature*, **173**, 1030 (1954) - 3. P. L. Baynton, H. Rawson, and J. E. Stanworth, J. Electrochem. Soc. 104, 237(1957) - 4. P. Mustarelli, M. P. Infante Garcia, and A. Magistris, *Phys. Chem. Glasses*, **44**(20), 159 (2003) - 5. S. Khasa, V. P. Seth, S. K. Grupta, and R. Murali Krishna, *Phys. Chem. Glasses*, **40**(5), 269 (1999) - 6. S. J. Moon, M. S. Kim, S. J. Chung, and H.T. Kim, *J. Kor. Phys. Soc.*, **29**(2), 213(1996) - 7. J. K. Jung, S. K. Song, T. H. Noh, and O. H. Han, J. Non-Crys. Solids, 270, 97 (2000) - 8. S. K. Song, Ph D thesis, Korea University, 1986