DOI QR코드

DOI QR Code

Effects of Soy Isoflavone Intake on Urinary and Fecal Excretion of Daidzein and Genistein in Ovariectomized Rats

대두 이소플라본 섭취수준이 난소절제한 흰쥐에서 Daidzein과 Genistein의 뇨와 변 중 배설에 미치는 영향

  • 남혜경 (국민대학교 식품영양학과) ;
  • 김선희 (국민대학교 식품영양학과)
  • Published : 2005.01.01

Abstract

This study was performed to determine the effect of three different concentrations of soy-isoflavones on excretions through urine and feces in either sham-operated or ovariectomized female rats. Seventy-two 16-week old Sprague-Dawley rats underwent sham operation or bilateral ovariectomy. They were provided diets containing different levels of soy isoflavones for 6 weeks: 50 ppm (low isoflavone intake; LI), 250 ppm (medium isoflavone intake; MI) and 500 ppm (high isoflavone intake; HI). The subsequent fecal and urinary excretions of daidzein and genistein were then measured. In the sham operated rats, body weight gains and food efficiency ratio of the MI and HI groups were significantly lower than control group, while food intake was not different. However, there was no significant difference in ovariectomized rats. The fecal excretion of daidzein was significantly higher in the HI group than the LI and MI groups, and that of genistein increased as dietary isoflavone intakes increased in both the sham operation and ovariectomy. The reverse tendency of fecal recovery was shown with dietary isoflavone dose only in genistein among ovariectomized rats. When dietary isoflavones were increased from 50 ppm to 500 ppm, the amounts of daidzein and genistein in the urine increased dose-dependently. The higher intakes of isoflavones leaded to lower recovery rates of daidzein and genistein in the urine in the sham-operated rats but not in the ovariectomized rats. The urinary recovery was significantly higher in the LI group than the MI and HI groups in the sham-operated rats. The excreted amounts and recovery of the two isoflavones in the urine were higher in the sham operated groups than in the ovariectomized groups, which implied an increased bioavailability of isoflavones by ovariectomy. Therefore, the results suggest that a more efficient use of soy isoflavones in ovariectomized conditions may occur, which indicates that a higher dose of soy isoflavones is necessary for the postmenopausal states.

본 연구에서는 16주령 암컷 흰쥐를 대상으로 이소플라본의 함량이 다른 세 종류의 식이를 6주간 공급한 후 뇨와 변에서 daidzein과 genistein의 배설량을 측정하여 생체 이용성을 살펴보고 난소절제 여부에 따른 차이가 있는지도 알아보고자 하였다. 식이 내 이소플라본의 첨가량이 많을수록 변 중 daidzein 배설량은 유의적으로 증가하여 섭취량에 따른 반응의존성을 나타내었다. 그러나 난소절제여부에 따른 차이는 없었다. 변 중 genistein의 배설량도 이 소플라본의 첨가량이 많을수록 유의적으로 증가하였으나, HI군에서 비교해보면 난소절제시 sham수술보다 변 중 배설량이 유의적으로 낮았다. 변 중 회수율의 경우에는 배설량과 같은 섭취량에 비례적인 관계는 나타나지 않았으며 난소절제 여부에 따른 차이도 뚜렷하지 않았다. 뇨 중 daidzein의 배설량은 변 중 배설량과 마찬가지로 sham과 난소절제 모두에서 이소플라본의 첨가량이 많을수록 유의적으로 증가되었다. 난소절제 여부에 따른 뇨 중 이소플라본의 배설량을 보면 LI, MI, HI군에서 daidEein의 배설량은 sham에 비해 난소절제에서 유의적으로 낮았으며 genistein의 배설량도 LI군에서는 유의적으로 낮았다. 또한 뇨 중 회수율을 보면 sham에서 LI군에 비해 Ml와 Hl군에서 회수율이 유의적으로 낮았는데, 난소절제의 경우에는 이소플라본의 수준에 따른 회수율의 차이가 없었다. 그리고 회수율은 난소절제에서 sham에 비해 LI와 MI군에서 유의적으로 낮았다. 그러므로 이소플라본의 섭취수준이 증가하면 뇨와 변을 통한 이소플라본의 배설은 한국인의 일상적 섭취수준의 10배 범위에서는 섭취량에 의존적임을 알 수 있으며, 난소절제를 하였을 경우 뇨와 변을 통한 배설량을 감소시켜서 더 많이 체내에서 이용함을 알 수 있었다. 섭취량이 증가하면 sham수술의 경우에는 뇨 중 회수율이 감소함에 비해 난소절제에서는 회수율이 동일하고 LI와 MI군에서는 유의적으로 sham에 비해 회수율이 낮으므로 난소절제모델에서는 이소플라본의 생체이용성이 매우 높음을 확인할 수 있었다. 이러한 점으로 미루어볼 때 난소호르몬의 분비가 없는 폐경 후 여성에게는 이소플라본의 섭취가 호르몬으로서의 효과가 뚜렷할 것으로 짐작되며 이소플라본의 보충섭취를 권장한다.

Keywords

References

  1. Anderson JJ, Anthony M, Cline J, Washburn SA, Garner SC. 1999. Health potential of soy isoflavones for menopausal women. Public Health Nutr 2: 489-504
  2. Choi JS, Kwon TW, Kim JS. 1996. Isoflavone contents in some varieties of soybean. Foods Biotechnol 5: 167-169
  3. Masdarinec G, Singh S, Meng L, Franke AA. 1998. Dietary soy intake and urinary isoflavone excretion among women from a multi-ethnic population. Cancer Epidemiol Markers & Prevention 7: 613-619
  4. Pereira MA, Barnes LH, Rassman VL, Kelloff GV, Steele VE. 1994. Use of azoxymethane-induced foci of aberrant crypts in rat colon to identify potential cancer chemopreventive agents. Carcinogenesis 15: 1049-1054 https://doi.org/10.1093/carcin/15.5.1049
  5. Setchell KDR, Borriell SP, Hulme P, Axelson M. 1984. Nonsteroidal estrogens of dietary origin: Possible roles in hormone dependent disease. Am J Clin Nutr 40: 569-578
  6. Tang BY, Adams NR. 1980. Effect of equol on estrogen receptors and on synthesis of DNA and protein in the immature rat uterus. J Endocrinol 85: 291-297 https://doi.org/10.1677/joe.0.0850291
  7. Setchell KDR, Cassidy A. 1999. Dietary isoflavones: Biological effects and relevance to human health. J Nutr 129: 758S-767S
  8. Anthony MS, Clarkson TB, Hughes CL Jr, Morgan TM, Burke GL. 1996. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 126: 43-50
  9. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinol 139: 4252-4263 https://doi.org/10.1210/en.139.10.4252
  10. Messina MJ, Loprinzi CL. 2001. Soy for breast cancer survivors: A critical review of the literature. J Nutr 131: 3095S- 3108S
  11. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF, Erdman JW. 1998. Soy protein and isoflavones: Their effects on blood lipids and bone density in postmenopausal women. Am J Clin Nutr 68: 1375S-1379S
  12. Alekel DL, Germain AS, Peterson CT, Hanson HB, Stewart JW, Toda T. 2000. Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of premenopausal women. Am J Clin Nutr 72: 844-852
  13. Deyhim F, Stoecker BJ, Brusewitz GH, Arjmandi BH. 2003. The effects of estrogen depletion and isoflavones on bone metabolism in rats. Nutr Res 23: 123-130 https://doi.org/10.1016/S0271-5317(02)00477-3
  14. Ishimi Y, Arai N, Wang X, Wu J, Umefaki K, Miyaura C, Takeda A, Ikegami S. 2000. Difference in effective dosage of genistein on bone and uterus in ovariectomized mice. Biochem Biophys Res Commu 274: 697-701 https://doi.org/10.1006/bbrc.2000.3175
  15. Thomas BF, Zeisel SH, Busby MG, Hill JM, Mitchell RA, Scheffler NM, Brown SS, Bloeden LT, Dix KJ, Jeffcoat AR. 2001. Quantitative analysis of the principle soy isoflavones genistein, daidzein and glycitein and their primary conjugated metabolites in human plasma and urine using reversed- phase high performance liquid chromatography with ultraviolet detection. J Chromatography B 760: 191-205 https://doi.org/10.1016/S0378-4347(01)00269-9
  16. Friend DR, Chang GW. 1984. A colon-specific drug-delivery system based on drug glycosides and the glycosides of colonic bacteria. J Med Chem 27: 261-266 https://doi.org/10.1021/jm00369a005
  17. Lampe JW, Martini MC, Kurzer MS, Adlercreutz H, Slavin JL. 1994. Urinary lignan and isoflavonoid excretion in premenopausal women consuming flaxseed powder. Am J Clin Nutr 60: 122-128
  18. Adlercrecutz H, Fotsis T, Bannwart C, Wahala K, Brunow G, Hase T. 1991. Isotope dilution gas chromatographicmass spectrometric method for the determination of lignans and isoflavonoids in human urine including identification of genistein. Clin Chim Acta 199: 263-278 https://doi.org/10.1016/0009-8981(91)90120-2
  19. Joannou GE, Kelly GE, Reeder AY, Waring M, Nelson C. 1995. A urinary profile study of dietary phytoestrogens. The identification and mode of metabolism of new isoflavones. J Steroid Biochem Mol Biol 54: 167-184 https://doi.org/10.1016/0960-0760(95)00131-I
  20. Slavin JL, Karr SC, Hutchins AM, Lampe JW. 1998. Influence of soybean processing habitual diet and soy dose on urinary isoflavonoid excretion. Am J Clin Nutr 68: 1492S-1495S
  21. Aldercreutz H, Honjo H, Hingashi A. 1991. Urinary excretion of ligands and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am J Clin Nutr 54: 1093-1100
  22. Xu X, Harris KS, Wang HJ, Murphy PA, Hendrich S. 1995. Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125: 2307-2315
  23. Hutchins AM, Slavin JL, Lampe JW. 1995. Urinary isoflavonoid and lignan excretion after consumption of fermented and unfermented soy products. J Am Diet Assoc 95: 545-551 https://doi.org/10.1016/S0002-8223(95)00149-2
  24. Wang H, Murphy PA. 1996. Mass balance study of isoflavones during soybean processing. J Agric Food Chem 44: 2377-2383 https://doi.org/10.1021/jf950535p
  25. Nout MJR, Rombouts FM. 1990. Recent developments in tempeh research. J Applied Bacteriol 69: 609-633 https://doi.org/10.1111/j.1365-2672.1990.tb01555.x
  26. Wang H, Murphy PA. 1994. Isoflavones content in commercial soybean foods. J Agric Food Chem 42: 1666-1673 https://doi.org/10.1021/jf00044a016
  27. Bloedon LT, Jeffcoat AR, Lopaczynski W, Schell MJ, Black TM, Dix KJ, Thomas BF, Albright C, Busby MG, Crowell JA, Zeisel SH. 2002. Safety and pharmacokinetics of purified soy isoflavones: Single-dose administration to postmenopausal women. Am J Clin Nutr 76: 1126-1137
  28. Lee SK, Lee MJ, Yoon S, Kwon DJ. 2000. Estimated isoflavone intake from soy products in Korean middle-aged women. J Kor Soc Food Sci Nutr 29: 948-956
  29. Sung CJ, Choi SH, Kim MH, Park MH, Go BS, Kim HK. 2000. A study on dietary isoflavone intake from soy foods and urinary isoflavone excretion and menopausal symptoms in Korean women in rural areas. Kor J Soc Commun Nutr 5: 120-129
  30. Reeves PG, Nielsen FH, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: Final report of the american institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939- 1951
  31. Kwon TW, Song YS, Kim JS, Moon GS, Kim JI, Hong JH. 1998. Current research on the bioactive functions of soyfoods in Korea. Kor Soybean Digest 15: 147-160
  32. Record IR, Jannes M, Dreosti IE, King RA. 1995. Induction of micronucleus formation in mouse splenocytes by the soy isoflavone genistein in vitro but not in vivo. Food Chem Toxicol 33: 919-922 https://doi.org/10.1016/0278-6915(95)00062-7
  33. Chung LW, Gleave ME, Hsi JT, Hong SJ, Zhau HE. 1991. Reciprocal mesenchymal-epithelial interation affecting prostate tumor growth and hormonal responsiveness. Cancer Surv 11: 91-121
  34. Kalu DN, Lin CC, Salerno E, Hollis BW, Echon R, Ray M. 1991. Skeletal response of ovariectomized rats to low and high doses of $17{\beta}-estradiol$. Bone Miner 14: 175-187 https://doi.org/10.1016/0169-6009(91)90021-Q
  35. Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S. 1994. Daidzein is a more bioavailable soy milk isoflavone than is genistein in adult women. J Nutr 124: 825-832
  36. Cassidy A, Bingham S, Setchell KD. 1994. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 60: 333-340