Surface Curvature Based 3D Pace Image Recognition Using Depth Weighted Hausdorff Distance

표면 곡률을 이용하여 깊이 가중치 Hausdorff 거리를 적용한 3차원 얼굴 영상 인식

  • 이영학 (영남대학교 전자정보공학부) ;
  • 심재창 (안동대학교 전자정보산업학부)
  • Published : 2005.01.01

Abstract

In this paper, a novel implementation of a person verification system based on depth-weighted Hausdorff distance (DWHD) using the surface curvature of the face is proposed. The definition of Hausdorff distance is a measure of the correspondence of two point sets. The approach works by finding the nose tip that has a protrusion shape on the face. In feature recognition of 3D face image, one has to take into consideration the orientated frontal posture to normalize after extracting face area from original image. The binary images are extracted by using the threshold values for the curvature value of surface for the person which has differential depth and surface characteristic information. The proposed DWHD measure for comparing two pixel sets were used, because it is simple and robust. In the experimental results, the minimum curvature which has low pixel distribution achieves recognition rate of 98% among the proposed methods.

본 논문은 3차원 얼굴 영상으로부터 추출된 표면 곡률에 대 하여, 깊이 값을 가중치로 하는 Hausdorff 거리를 이용한 얼굴 인식 알고리즘을 제안한다. Hausdorff 거리 방법은 두 개의 점 집합에 대한 일치성을 측정하는 방법이다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾고, 회전에 대한 정규화를 실시한다. 3차원 얼굴 영상으로부터 표면 특성의 정보인 주 곡률, 평균 곡률 그리고 가우시안 곡률 값을 추출한다. 입력 영상과 데이터베이스 영상과의 유사도 비교를 위해 두 영상에 대하여 문턱치 값에 의한 이진 영상을 추출하여 각 점에 대한 깊이 값을 가중치로 하는 깊이 가중치 Hausdoff 거리(DWHD)를 이용하여 비교하였다. 제안된 방법으로 수행한 결과, 인식률은 픽셀의 분포가 가장 적은 주 곡률의 최소 곡률이 98%로 가장 높게 나타났다.

Keywords