신장 방사선 섭취량 결정을 위한 Conjugate View 방법에 대한 평가

Evaluation of a Conjugate View Method for Determination of Kidney Uptake

  • 봉정균 (연세대학교 진단방사선과 방사선의과학 연구소) ;
  • 윤미진 (연세대학교 핵의학과) ;
  • 이종두 (연세대학교 핵의학과) ;
  • 김희중 (연세대학교 핵의학과) ;
  • 손혜경 (연세대학교 진단방사선과 방사선의과학 연구소) ;
  • 권윤영 (연세대학교 진단방사선과 방사선의과학 연구소) ;
  • 박해정 (연세대학교 핵의학과) ;
  • 김유선 (연세대학교 외과학교실)
  • Bong, Jung-Kyun (Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, Yonsei University) ;
  • Yun, Mi-Jin (Division of Nuclear Medicine, Yonsei University College of Medicine, Yonsei University) ;
  • Lee, Jong-Doo (Division of Nuclear Medicine, Yonsei University College of Medicine, Yonsei University) ;
  • Kim, Hee-Joung (Division of Nuclear Medicine, Yonsei University College of Medicine, Yonsei University) ;
  • Son, Hye-Kyung (Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, Yonsei University) ;
  • Kwon, Yun-Youug (Research Institute of Radiological Science, Department of Radiology, Yonsei University College of Medicine, Yonsei University) ;
  • Park, Hae-Jeong (Division of Nuclear Medicine, Yonsei University College of Medicine, Yonsei University) ;
  • Kim, Yu-Seun (Department of Surgery, Yonsei University College of Medicine, Yonsei University)
  • 발행 : 2005.06.30

초록

목적: 본 연구의 목적은 신장의 정확한 방사능 섭취량을 얻기 위해서 기하학적 평균 감쇠보정을 이용한 conjugate view 방법(CVM)을 평가하고 Gate 방법과 비교하는 것이다. 대상 및 방법 : 본 연구는 신장의 방사능 섭취량을 시뮬레이션하기 위해서 몬테칼로 코드, SIMIND와 Zubal 팬텀을 사용하였다. 또한 이중 감마카메라를 이용하여 직경 5cm인 팬텀들을 직경 20cm인 실제 팬텀에 삽입하여 실험을 하였다. CVM 방법을 평가하기 위해서 산란과 감쇠가 없는 이상적 데이터와 비교되었다. 또한, CVM 방법을 Gate 방법과 비교하였고, 산란보정의 적용 또는 비적용으로 나누어 CVM 방법을 실행하였다. Gate 방법은 임상에서 사용하는 것처럼 산란보정을 적용하지 않았으며, $0.12cm^{-1}$$0.15cm^{-1}$ 감쇠계수들을 적용하였다. 관심영역 내에 있는 평균계수, 신장영상 위에서 얻어진 프로파일, 선형회귀분석을 이용하여 데이터를 분석하였고, 이상적 데이터와의 상관계수를 계산하였다. 결과: 컴퓨터 시뮬레이션의 경우, 이상적 데이터, CVM 방법, Gate 방법으로부터 얻어진 평균계수들은 각각 (오른쪽: $998{\pm}209$, 왼쪽: $896{\pm}249$), (오른쪽: $911{\pm}207$, 왼쪽: $815{\pm}265$), (오른쪽: $1065{\pm}267$, 왼쪽 $1546{\pm}267$)이었다. CVM 방법은 이상적 데이터와 좋은 상관관계를 보여주었고, 이상적 데이터와 대한 CVM 방법, Gate방법의 상관계수는 각각 (오른쪽: 0.91, 왼쪽: 0.93)와 (오른쪽: 0.85, 왼쪽 0.90)이었다. 결론: 기하학적 평균 감쇠보정을 이용한 CVM 방법은 Gate 방법보다 정량적으로 더 정확한 값을 제공하였다. 결론적으로, 신장 깊이에 영향을 받지 않는 CVM 방법으로 더욱 정확하게 신장의 방사능 섭취량을 측정할 수 있을 것으로 생각된다.

Purpose: In order to obtain better quantitation of kidney uptake, this study is to evaluate a conjugate view method (CVM) using a geometric mean attenuation correction for kidney uptake and to compare it to Gate's method. Materials & Methods: We used a Monte Carlo code, SIMIND and a Zubal phantom, to simulate kidney uptake. SIMIND was both simulated with or without scatter for the Zubal phantom. Also, a real phantom test was carried out using a dual-head gamma camera. The activity of 0.5 mCi was infused into two small cylinder phantoms of 5 cm diameter, and then, they were inserted into a cylinder phantom of 20 cm diameter. The results by the CVM method were compared with ideal data without both of attenuation and scatter and with Gate's method. The CVM was performed with or without scatter correction. The Gate's method was performed without scatter correction and it was evaluated with regards to $0.12cm^{-1}\;and\;0.15cm^{-1}$ attenuation coefficients. Data were analyzed with comparisons of mean counts in the legions of interest (ROI), profiles drawn over kidney images and linear regression. Correlation coefficients were calculated with ideal data, as well. Results: In the case of the computer simulation, mean counts measured from ideal data, the CVM and the Gate's method were (right $998{\pm}209$, left: $896{\pm}249$), (right: $911{\pm}207$, left: $815{\pm}265$), and (right: $1065{\pm}267$, left: $1546{\pm}267$), respectively. The ideal data showed good correlation with the CVM and the correlation coefficients of the CVM, Gate's method were (right: 0.91, left: 0.93) and (right: 0.85, left: 0.90), respectively. Conclusion: The conjugate view method using geometric mean attenuation correction resulted in better accuracy than the Gate's method. In conclusion, the conjugate view method independent of renal depths may provide more accurate kidney uptake.

키워드

참고문헌

  1. Gates GF. Glomerular filtration rate: estimation from fractional renal accumulation of Tc-99m DTPA (stannous). Am J Roentgenol 1982;138:565-70 https://doi.org/10.2214/ajr.138.3.565
  2. Nimmo MJ, Merrick MV, Allan PL. Measurement of relative renal function. A comparison of methods and assessment of reproducibility. Br J Radiol 1987;60:861-4 https://doi.org/10.1259/0007-1285-60-717-861
  3. Tsukamoto E, Itoh K, Katoh C, Mochizuki T, Shiga T, Morita K, et al. Validity of 99mTc-DMSA renal uptake by planar posteriorview method in children. Annals of Nucl Med 1999;13(6):383-7 https://doi.org/10.1007/BF03164931
  4. Tnnessen KH, Munck O, Hald T, Mgensen P, Wolf H. Influence on the radiorenogram of variation in skin to kidney distance and the clinical importance hereof. In: Winkel K, Balaufox MD, Funck- Bretano J-L, eds. Proceedings of the international symposium on radionuclides in nephrology. Stuttgart: Thieme, 1974;79-86
  5. Taylor A, Lewis C, Giacometti A, Hall EC, Barefield KP. Improved formulas for the estimation of renal depth in adults. J Nucl Med 1993;34:1766-9
  6. Lythgoe MF, Gradwell MJ, Evans K, Gordon I. Estimation and relevance of depth correction in paediatric renal studies. Eur J Nucl Med 1998;25(2):115-9 https://doi.org/10.1007/s002590050202
  7. Steinmetz MP, Zwas ST, Macadziob S, Rotemberg G, Shrem Y. Renal depth estimates to improve the accuracy of glomerular filtration rate. J Nucl Med 1998;39(10):1822-5
  8. Lin E, Connolly LP, Zurakowski D, DiCanzio J, Drubach L, Mitchell K, et al. Reproducibility of renal length measurements with $^{99m}Tc$-DMSA SPECT. J Nucl Med 2000;41(10):1635-5
  9. 유이령, 김성훈, 정용안, 정현석, 이해규, 박영하 등. 사구체 여과율 측정을 위한 한국인의 신장깊이에 관한 방정식 도출과 이 용. 대한핵의학회지 2000;34(5):418-25
  10. Gruenewald SM, Collins LT, Fawdry RM, Kidney depth measurement and its influence on quantitation of function from gamma camera renography. Clin Nucl Med 1985;10:398-401 https://doi.org/10.1097/00003072-198506000-00002
  11. Hambye AS, Merlo P, Hermans J, Bodart F, Beauduin M, Gilbeau JP, Kidney depth measued by using Tc-99m-DTPA. Comparison with CAT scan: review of 50 measurements, Nuc Med Commun 1992;13:488-93 https://doi.org/10.1097/00006231-199207000-00002
  12. Wujanto R, Lawson RS, Prescott MC, Testa HJ, The importance of using anterior and posterior views in the calculation of differential renal function using Tc-99m-DMSA, Br J Radiol 1987;60:869-72 https://doi.org/10.1259/0007-1285-60-717-869
  13. Kojima A Ohyama Y, Tomiguchi S, Kira M, Matsumoto M, Takahashi M, et al. Quantitative planar imaging method for measurement of renal activity by using a conjugate-emission image and transmission data. Med Phys 2000;27(3):608-15 https://doi.org/10.1118/1.598900
  14. Ljungberg M, Strand S-E A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Meth Prog Biomed 1989;29:257-72
  15. De Vries DJ, Moore SC, Zimmerman RE, Mueller SP, Friedland B, Lanza RC. Development and validation of a Monte Carlo simulation of photon transport in an Anger camera. IEEE Trans Med Imag 1990;9:430-8 https://doi.org/10.1109/42.61758
  16. Ljungberg M, Msaki P, Strand S-E. Comparison of dual-window and convolution scatter correction techniques using the Monte Carlo method. Phys Med Biol 1990;8:1099-110
  17. Zubal IG, Harrell CR, Smith EO, Rattner Z, Gindi GR, Hoffer PB. Computerized three-dimensional segemented human anatomy. Med Phys 1994;21:299-302 https://doi.org/10.1118/1.597290
  18. Ogawa K, Harata Y, Ichihara T, Kubo A, hashimotoS, A practical method for position-dependent Compton scatter compensation in single photon emission CT. IEEE Trans Med Imaging 1991;10: 408-2 https://doi.org/10.1109/42.97591
  19. Cherry SR, Sorenson JA, Phelps ME. Physics in nuclear medicine. 3rd ed. Philadelphia: Saunders; 2003, p.305-19
  20. Floyd CE, Jaszack RJ, Greer KL, Coleman RE. Deconvolution of Compton scatter in SPECT. J Nucl Med 1985;26:403-8
  21. Msaki B, Axelsson B, Larsson SA. Some physical factors influencing the accuracy of convolution scatter correction in SPECT. Phys Med Biol 1988;34:283-298 https://doi.org/10.1088/0031-9155/34/3/002
  22. 정현석, 정용안, 김성훈, 김정호, 이성용, 손형선 등. 다양한 배 후 방사능 설정에 따른 Gates 법 사구체 여과율의 차이: I-125-Iothalamate 측정법과 비교. 대한핵의학지 2004;38:306-10
  23. Inoue y, Machida K, Norinari H, Takahashi T. Background correction in estimating initial renal uptake: comparison between Tc-99m MAG3 and Tc-99m DTPA. Clin Nucl Med 1994; 19:1049-54 https://doi.org/10.1097/00003072-199419120-00002