Quantification of Myocardial Perfusion and Function Using SPECT and PET

SPECT와 PET을 이용한 심장관류 및 기능의 정량화

  • Lee, Jae-Sung (Departments of Nuclear Medicine, Seoul National University College of Medicine)
  • 이재성 (서울대학교 의과대학 핵의학교실)
  • Published : 2005.04.30

Abstract

Myocardial perfusion and function can be quantified using SPECT and PET. There was controversy over the usefulness of the correction techniques for physical artifacts, such as photon attenuation and scatter, in the quantification of myocardial perfusion using SPECT. However, the cumulated results of many investigations have leaded the consensus on the usefulness of the correction procedures to improve the accuracy and specificity of the myocardial SPECT in the assessment of coronary artery diseases. Although the clinical value of the myocardial perfusion PET has not been preyed yet, the absolute myocardial blood flow and perfusion reserve values quantified using myocardial PET are employed in many basic investigations. In this paper, the methods for the quantitative myocardial SPECT and PET will be reviewed.

Keywords

References

  1. Hendel RC, Corbett JR, Cullom SJ, DePuey EG, Garcia EV, Bateman TM. The value and practice of attenuation correction for myocardial perfusion SPECT imaging: a joint position statement from the American Society of Nuclear Cardiology and the Society of Nuclear Medicine. J Nucl Cardiol 2002;9:135-43 https://doi.org/10.1067/mnc.2002.120680
  2. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75-88
  3. Tsui BM, Frey EC, LaCroix KJ, Lalush DS, McCartney WH, King MA, et al. Quantitative myocardial perfusion SPECT. J Nucl Cardiol 1998;5:507-22 https://doi.org/10.1016/S1071-3581(98)90182-9
  4. El Fakhri G, Buvat I, Benali H, Todd-Pokropek A, Di Paola R. Relative impact of scatter, collimator response, attenuation, and finite spatial resolution corrections in cardiac SPECT. J Nucl Med 2000;41:1400-8
  5. Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601-9 https://doi.org/10.1109/42.363108
  6. Shepp LA, Vardi Y. Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imaging 1982;1:113-22
  7. Tsui BM, Gullberg GT, Edgerton ER, Ballard JG, Perry JR, McCartney WH, et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497-507
  8. Tung C-H, Gullberg GT, Zeng GL, Christian PE, Datz FL, Morgan HT. Nonuniform attenuation correction using simultaneous transmission and emission converging tomography. IEEE Trans Nucl Sci 1992;39:1134-43 https://doi.org/10.1109/23.159773
  9. Jaszczak RJ, Greer KL, Floyd CE, Harris CC, Coleman RE. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893-900
  10. Koral KF, Swailem FM, Buchbinder S, Clinthorne NH, Rogers WL, Tsui BMW. SPECT dual-energy-window Compton correction: scatter multiplier required for quantification. J Nucl Med 1990;31: 90-8
  11. Buvat I, Villafuerte MR, Pokropek AT, Benali H, Paola RD. Comparative assessment for nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476-88
  12. King MA, deVries DJ, Pan T-S, Pretorius PH, Case JA. An investigation of the filtering of TEW scatter estimates used to compensate for scatter with ordered subset reconstructions. IEEE Trans Nucl Sci 1997;44:1140-5 https://doi.org/10.1109/23.596978
  13. Beekman FJ, de Jong HW, Slijpen ET. Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation. Phys Med Biol 1999;44:N183-N192 https://doi.org/10.1088/0031-9155/44/8/402
  14. Ivanovic M, Weber DA, Locaric S, Franceschi D. Feasibility of dual radionuclide brain imaging with I-123 and Tc-99m. Med Phys 1994;21:667-75 https://doi.org/10.1118/1.597320
  15. K Knesaurek, Machac J. Three-window transformation cross-talk correction for simultaneous dual-isotope imaging. J Nucl Med 1997;38:1992-8
  16. Buvat I, Rodriguez-Villafuerte M, Todd-Pokropek A, Benali H, Di Paola R. Comparative assessment of nine scatter correction methods based on spectral analysis using Monte Carlo simulations. J Nucl Med 1995;36:1476-88
  17. Maksud P, Fertil B, Rica C, El Fakhri G, Aurengo A. Artificial neural network as a tool to compensate for scatter and attenuation in radionuclide imaging. J Nucl Med 1998;39:735-45
  18. Nakamura M, Takeda K, Ichihara T, Motomura N, Shimizu H, Saito Y, et al. Feasibility of simultaneous stress 99mTc-sestamibi/rest 201Tl dual-isotope myocardial perfusion SPECT in the detection of coronary artery disease. J Nucl Med 1999;40:895-903
  19. Weinmann P, Faraggi M, Moretti JL, Hannequin P. Clinical validation of simultaneous dual-isotope myocardial scintigraphy. Eur J Nucl Med Mol Imaging 2003;30:25-31 https://doi.org/10.1007/s00259-002-0995-y
  20. Xia W, Lewitt RM, Edholm PR. Fourier correction for spatially variant collimator blurring in SPECT. IEEE Trans Med Imaging 1995;14:100-15 https://doi.org/10.1109/42.370406
  21. van Elmbt L, Warland S. Simultaneous correction of attenuation and distance-dependent resolution in SPECT. Phys Med Biol 1993;38: 1207-1217 https://doi.org/10.1088/0031-9155/38/9/003
  22. Kojima A, Matsumoto M, Takahashi M, Hirota Y, Yoshida H. Effect of spatial resolution on SPECT quantification values. J Nucl Med 1989;30:508-14
  23. Weckesser M, Hufnagel A, Ziemons K, Griessmeier M, Sonnenberg F, Hacklander T, et al. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy. Eur J Nucl Med 1997;24:1156-61 https://doi.org/10.1007/BF01254249
  24. Iida H, Law I, Pakkenberg B, Krarup-Hansen A, Eberl S, Holm S, et al. Quantitation of regional cerebral blood flow corrected for partial volume effect using O-15 water and PET: I. Theory, error analysis, and stereologic comparison. J Cereb Blood Flow Metab 2000;20:1237-51
  25. Iida H, Eberl S. Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT. J Nucl Cardiol 1998;5:313-31 https://doi.org/10.1016/S1071-3581(98)90133-7
  26. Smith AM, Gullberg GT, Christian PE, Datz FL. Kinetic modeling of teboroxime using dynamic SPECT imaging of a canine model. J Nucl Med 1994;35:484-95
  27. Garcia EV, Cooke CD, Van Train KF, Folks R, Peifer J, DePuey EG, et al. Technical aspects of myocardial SPECT imaging with technetium-99m sestamibi. Am J Cardiol 1990;66:23E-31E https://doi.org/10.1016/0002-9149(90)91260-D
  28. Germano G, Kavanagh PB, Chen J, Waechter P, Su HT, Kiat H, et al. Operator-less processing of myocardial perfusion SPECT studies. J Nucl Med 1995;36:2127-32
  29. Van Train KF, Garcia EV, Maddahi J, Areeda J, Cooke CD, Kiat H, et al. Multicenter trial validation for quantitative analysis of same-day rest-stress technetium-99m-sestamibi myocardial tomograms. J Nucl Med 1994;35:609-18
  30. Meine TJ, Hanson MW, Borges-Neto S. The additive value of combined assessment of myocardial perfusion and ventricular function studies. J Nucl Med 2004;45:1721-4
  31. Go V, Bhatt MR, Hendel RC. The diagnostic and prognostic value of ECG-gated SPECT myocardial perfusion imaging. J Nucl Med 2004;45:912-21
  32. Germano G, Kiat H, Kavanagh PB, Moriel M, Mazzanti M, Su HT, et al. Automatic quantification of ejection fraction from gated myocardial perfusion SPECT. J Nucl Med 1995;36:2138-47
  33. Smith WH, Kastner RJ, Calnon DA, Segalla D, Beller GA, Watson DD. Quantitative gated single photon emission computed tomography imaging: a counts-based method for display and measurement of regional and global ventricular systolic function. J Nucl Cardiol 1997;4:451-63 https://doi.org/10.1016/S1071-3581(97)90002-7
  34. Faber TL, Cooke CD, Folks RD, Vansant JP, Nichols KJ, DePuey EG, et al. Left ventricular function and perfusion from gated SPECT perfusion images: an integrated method. J Nucl Med 1999;40:650-9
  35. Bergmann SR, Fox KAA, Rand AL, et al. Quantification of regional myocardial blood flow in vivo with $H_2\;^{15}O$. Circulation 1984;70:724-33 https://doi.org/10.1161/01.CIR.70.4.724
  36. Araujo LI, Lammertsma AA, Rhodes CG, et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991;83:875-85 https://doi.org/10.1161/01.CIR.83.3.875
  37. Lammertsma AA, De Silva R, Araujo LI, Jones T. Measurementof regional myocardial blood flow using $C^{15}O_2$ and positron emissiontomography: comparison of tracer models. Clin Phys Physiol Meas 1992;13:1-20 https://doi.org/10.1088/0143-0815/13/1/001
  38. Bol A, Melin JA, Vanoverschelde J-L, et al. Direct comparison of [$^{13}N$] ammonia and [$^{15}O$] water estimates of perfusion withquantification of regionalmyocardial blood flow by microspheres.Circulation 1993;87:512-25 https://doi.org/10.1161/01.CIR.87.2.512
  39. Kety SS. The theory and application of the exchange inert gas at the lung and tissues. Pharmacol Rev 1951;3:1-41
  40. Kety SS. Measurement of local blood flow by the exchange of an inert, diffusible substance. Methods Med Res 1960;8:228-36
  41. Iida H, Kanno I, Takahashi A, et al. Measurement of absolute myocardial blood flow with $H_2\;^{15}O$ and dynamic positron-emission tomography: strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104-15 https://doi.org/10.1161/01.CIR.78.1.104
  42. Herrero P, Markham J, Myears DW, Weiheimer CJ, Bergmann SR. Measurement of myocardial blood flow with positron emission tomography: correction for count spillover and partial volume effects. Math Comput Model 1988;11:807-12 https://doi.org/10.1016/0895-7177(88)90605-X
  43. Iida H, Tamura Y, KitamuraK, et al. Histochemical correlates of $^{15}O$-water-perfusible tissue fraction in experimental canine studies with old myocardial infarction. J Nucl Med 2000;41:1737-45
  44. Lee JS, Ahn JY, Lee DS, Seo K, Park KS. Application of factor and cluster analysis for the parametric image of myocardial blood flow using $H_2\;^{15}O$ and dynamic PET. Proc IEEE Nucl Sci Symp Med Imag Conf 2000
  45. Lee JS, Lee DS, Ahn JY, Yeo JS, Cheon GJ, Kim S-K, et al. Generation of parametric image of regional myocardial blood flow using $H_2\;^{15}O$ dynamic PET and linear least squares method. J NuclMed In revision
  46. Hermansen F, Ashburner J, Spinks TJ, et al. Generation of myocardial factor images directly from the dynamic oxygen-15- water scan without use of an oxygen-15-carbon monoxide blood-pool scan. J Nucl Med 1998;39:1696-1702
  47. Ahn JY, Lee DS, Lee JS, et al. Quantification of regional myocardial blood flow using dynamic $H_2\;^{15}O$ PET and factor analysis. J Nucl Med 2001;42:782-7
  48. Lee JS, Lee DS, Ahn JY, et al. Blind separation of cardiac components and extraction of input function from $H_2\;^{15}O$ dynamic myocardial PET using independent component analysis. J Nucl Med 2001;42:938-43
  49. Lee JS, Lee DD, Choi S, et al. Non-negative matrix factorization of dynamic images in nuclear medicine. Proc IEEE Nucl Sci Symp Med Imag Conf 2001
  50. Lee BI, Lee JS, Lee DS, Kang WJ, Lee JJ, Kim SJ, et al. Development of quantification methods for the myocardial blood flow using ensemble independent component analysis for dynamic $H_2^{15}O$ PET. Korean J Nucl Med 2004;38:486-91
  51. Schelbert HR, Phelps ME, Huang SC, MacDonald NS, Hansen H, Selin C, et al. N-13 ammonia as an indicator of myocardial blood flow. Circulation 1981;63:1259-72 https://doi.org/10.1161/01.CIR.63.6.1259
  52. Choi Y, Huang SC, Hawkins RA, Kim JY, Kim BT, Hoh CK, et al. Quantification of myocardial blood flow using 13N-ammonia and PET: comparison of tracer models. J Nucl Med 1999;40:1045-55
  53. Kuhle WG, Porenta G, Huang SC, Buxton D, Gambhir SS, Hansen H, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992;86:1004-17 https://doi.org/10.1161/01.CIR.86.3.1004
  54. Choi Y, Huang S-C, Hawkins RA, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET. J Nucl Med 1993;34:488-97
  55. Hutchins GD, Caraher JM, Raylman RR. A region of interest strategy for minimizing resolution distortions in quantitative myocardial PET studies. J Nucl Med 1992;33:1243-50
  56. Muzik O, Beanlands RS, Hutchins GD, Mangner TJ, Nguyen N, Schwaiger M. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83-91
  57. Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032-42 https://doi.org/10.1016/0735-1097(90)90237-J
  58. Gould KL. Clinical cardiac PET using generator-produced Rb-82: a review. Cardiovasc Intervent Radiol 1989;12:245-51 https://doi.org/10.1007/BF02575408