Migration of $^{99m}Tc$-Hexamethylpropylene Amino Oxime (HMPAO) Labeled Immature and Mature Dendritic Cells in the Mouse

마우스에서 Tc-99m HMPAO 표지 미성숙 및 성숙 수지상세포의 이동에 관한 연구

  • Li, Ming-Hao (Department of Nuclear Medicine, Chonnam National University Medical School) ;
  • Lee, Je-Jung (Department of Medicine, Chonnam National University Medical School) ;
  • Min, Jung-Joon (Department of Nuclear Medicine, Chonnam National University Medical School) ;
  • Heo, Young-Jun (Department of Nuclear Medicine, Chonnam National University Medical School) ;
  • Song, Ho-Chun (Department of Nuclear Medicine, Chonnam National University Medical School) ;
  • Park, Young-Kyu (Department of Surgery, Chonnam National University Medical School) ;
  • Park, An-Na (Research Institute for Clinical Medicine, Chonnam National University Hospital) ;
  • Bom, Hee-Seung (Department of Nuclear Medicine, Chonnam National University Medical School)
  • 이명호 (전남대학교 의과대학 핵의학교실) ;
  • 이제중 (전남대학교 의과대학 내과학교실) ;
  • 민정준 (전남대학교 의과대학 핵의학교실) ;
  • 허영준 (전남대학교 의과대학 핵의학교실) ;
  • 송호천 (전남대학교 의과대학 핵의학교실) ;
  • 박영규 (전남대학교 의과대학 외과학교실) ;
  • 박안나 (전남대학교병원 임상연구소) ;
  • 범희승 (전남대학교 의과대학 핵의학교실)
  • Published : 2005.02.28

Abstract

Purpose: The purpose of this study is to evaluate migration of technetium-99m hexamethylpropylene amine oxime ($^{99m}Tc$-HMPAO) labeled immature and mature dendritic cells (DC) in the mouse. Methods: DC were collected from bone marrow (BM) of tibiae and femurs of mice. Immature and mature DC from BM cells were radiolabeled with $^{99m}Tc$-HMPAO. To evaluate the functional and phenotypic changes of DC from radiolabeling, the allogeneic mixed lymphocyte reaction (MLR) and fluorescence-activated cell sorting (FACS) analysis were performed before and after labeling with $^{99m}Tc$-HMPAO. Migration of intravenously injected DC (iv-DC) was assessed by serial gamma camera images of mice with or without subcutaneous tumor. Percent injected dose per gram (%ID/g) was calculated in lungs, liver, spleen, kidneys, and tumor through dissection of each mice after 24 hours of injection. Results: Labeling efficiency of immature and mature DC were $60.4{\pm}5.4%\;and\;61.8{\pm}6.7%$, respectively. Iv-DC initially appeared in the lungs, then redistributed mainly to liver and spleen. Migration of mature DC to spleen was significantly higher than that of immature DC ($38.3{\pm}4.0%\;vs.\;32.2{\pm}4.1%$ in control group, $40.4{\pm}4.1%\;vs.\;35.9{\pm}3.8%$ in tumor group; p<0.05). Migration to tumor was also significantly higher in mature DC than in immature DC ($2.4{\pm}0.3%\;vs\;1.7{\pm}0.2%$; p=0.034). Conclusion: Assessment of migration pattern of DC in mice was possible using $^{99m}Tc$-HMPAO labeled immature and mature DC. Migration of mature DC to spleen and tumor was higher than that of immature DC when they were i.v. injected.

목적 : 이 연구는 $^{99m}Tc$-HMPAO에 표지된 미성숙 또는 성숙 수지상 세포의 마우스 생체 내 분포와 이동 양상에 대해 알아보고자 하였다. 대상 및 방법: 마우스의 대퇴골과 경골의 골수로부터 수지상 세포를 배양하고 미성숙, 성숙 수지상세포를 $^{99m}Tc$-HMPAO로 표지하였다. 방사성 표지 전후에 수지상 세포의 기능 및 표현형의 변화 유무를 알기 위해 동종 혼합 림프구 반응 (allogeneic mixed lymphocyte reaction)과 형광 활성 세포 선별 (fluorescence-activated cell sorting)을 시행하였다. 정맥 주사된 수지상 세포의 생체 내 이동은 감마 카메라 영상과 생체 분포 실험을 통하여 평가하였고, 피하 종양 마우스 모델과 대조군에서 비교하였다. 폐, 간, 비장, 신장, 종양 등 조직에서 그램 당 주사량의 백분율(%ID/g)을 계산하였다. 결과: 미성숙, 성숙 수지상 세포의 표지 효율은 각각 $60.4{\pm}5.4%$$61.8{\pm}6.7%$ 였다. 수지상 세포의 정맥주사 후 방사능은 폐에서 가장 먼저 관찰되었고, 이후 간과 비장에 분포되었다. 성숙 수지상 세포가 미성숙 수지상 세포에 비해 비장으로 더 많이 이동하였다(대조군; $38.3{\pm}4.0%\;vs.\;32.2{\pm}4.1%$, 종양이식 군: $40.4{\pm}4.1%\;vs.\;35.9{\pm}3.8%$, p<0.05). 종양으로의 이동 역시 성숙 수지상 세포가 미성숙 수지상 세포에 비해 더 많은 비율을 보였다($2.4{\pm}0.3%\;vs\;1.7{\pm}0.2%$; p=0.034). 결론: $^{99m}Tc$-HMPAO 에 표지된 수지상 세포를 이용하여 마우스 생체 내 이동을 실시간 영상화 할 수 있었다. 마우스 정맥에 주사되었을 때, 더 많은 비율의 성숙 수지상 세포가 미성숙 수지상 세포에 비해서 비장이나 종양으로 이동함을 알 수 있었다.

Keywords

References

  1. Caux C, Ait-Yahia S, Chemin K, de Bouteiller O, Dieu-Nosjean MC, Homey B, et al. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 2000;22:345-369
  2. immunology and cancer therapy on nuclear medicine. Semin Nucl Med 2001;31:342-9
  3. Allavena P, Sica A, Vecchi A, Locati M, Sozzani S, Mantovani A. The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues. Immunol Rev 2000;177:141-9 https://doi.org/10.1034/j.1600-065X.2000.17714.x
  4. Murphy G, Tjoa B, Ragde H, Kenny G, Boynton A. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen. Prostate 1996;29:371-80 https://doi.org/10.1002/(SICI)1097-0045(199612)29:6<371::AID-PROS5>3.0.CO;2-B
  5. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabble S, Dummer R, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med 1998;4:328-32 https://doi.org/10.1038/nm0398-328
  6. Hsu FJ, Benike C, Fagnoni F, Liles TM, Czerwinski D, Taidi B, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nature Med 1996;2:52-8 https://doi.org/10.1038/nm0196-52
  7. Bender A, Sapp M, Schuler G, Steinman R, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immuno Methods 1996;196:121-35 https://doi.org/10.1016/0022-1759(96)00079-8
  8. Kung HF, Ohmomo Y, Kung MP. Current and future radiopharamaceuticals for brain imaging with single photon emission computed tomography. Semin Nuc Med 1990;2:290-302
  9. Kupiec-Weglinski JW, Austyn JM, Morris PJ. Migration patterns of dendritic cells in the mouse. Traffic from the blood, and T cell-dependent and -independent entry to lymphoid tissues. J Exp Med 1988;167:632-45 https://doi.org/10.1084/jem.167.2.632
  10. Garrigan K, Moroni-Rawson P, McMurray C, Hermans I, Abernethy N, Watson J, et al. Functional comparison of spleen dendritic cells and dendritic cells cultured in vitro from bone marrow precursors. Blood 1996;88:3508-12
  11. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR, et al. In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 2004;104:453-61 https://doi.org/10.1182/blood-2004-01-0151
  12. Austyn JM, Kupiec-Weglinski JW, Hankins DF, Morris PJ. Migration patterns of dendritic cells in the mouse. Homing to T cell-dependent areas of spleen, and binding within marginal zone. J Exp Med 1988;167:646-51 https://doi.org/10.1084/jem.167.2.646
  13. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 1999;59:3340-5
  14. Morse MA, Coleman RE, Akabani G, Niehaus N, Coleman D, Lyerly HK. Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 1999;59:56-8
  15. Olasz EB, Lang L, Seidel J, Green MV, Eckelman WC, Katz SI. Fluorine-18 labeled mouse bone marrow-derived dendritic cells can be detected in vivo by high resolution projection imaging. J Immunol Methods 2002;260:137-48 https://doi.org/10.1016/S0022-1759(01)00528-2
  16. Cravens PD, Lipsky PE. Dendritic cells, chemokine receptors and autoimmune inflammatory diseases. Immunol Cell Biol 2002;80:497-505 https://doi.org/10.1046/j.1440-1711.2002.01118.x
  17. Dieu MC, Vandervliet B, Vicari A, Bridon JM, Oldham E, Ait-Yahia S, et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 1998;188:373-86 https://doi.org/10.1084/jem.188.2.373
  18. Ngo VN, Tang HL, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med 1998;188:181-91 https://doi.org/10.1084/jem.188.1.181
  19. Willimann K, Legler DF, Loetscher M, Stuber Roos R, Delgado MB, Clark-Lewis I, et al. The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. Eur J Immunol 1998;28:2025-34 https://doi.org/10.1002/(SICI)1521-4141(199806)28:06<2025::AID-IMMU2025>3.0.CO;2-C
  20. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 1999;189:451-60 https://doi.org/10.1084/jem.189.3.451
  21. Frster R, Schubel A, Breitfeld D, Kremmer E, Renner-Mller I, Wolf E, Lipp M. CCR7 coordinates the primary immune response by establishing functional microenviroments in secondary lymphoid organs. Cell 1999;99:23-33 https://doi.org/10.1016/S0092-8674(00)80059-8
  22. Vicari AP, Treilleux I, Lebecque S. Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines. Semin Cancer Biol 2004;14:161-169
  23. Costa DC, Lui D, Ell PJ. White cells radiolabelled with 111In and 99Tcm--a study of relative sensitivity and in vivo viability. Nucl Med Commun 1988;9:725-31 https://doi.org/10.1097/00006231-198810000-00009
  24. Blocklet D, Toungouz M, Kiss R, Lambermont M, Velu T, Duriau D, et al. $^{111}In$-oxine and $^{99m}Tc$-HMPAO labelling of antigen-loaded dendritic cells: in vivo imaging and influence on motility and actin content. Eur J Nucl Med Mol Imaging 2003;30:440-7 https://doi.org/10.1007/s00259-002-1001-4