DOI QR코드

DOI QR Code

Economic Feasibility Study for CO2 Ocean Sequestration

CO2 해양격리시스템의 기술.경제적 가능성평가

  • 박세헌 (한국해양연구원 해양과학기술정책연구센터) ;
  • 오위영 (한국해양연구원 해양과학기술정책연구센터) ;
  • 권문상 (한국해양연구원 해양과학기술정책연구센터)
  • Published : 2005.12.31

Abstract

The $CO_2$ storage in geologic and oceanic reservoirs is considered to be one of the carbon management strategies for responding to global climate change. Ocean carbon sequestration is purposeful storage acceleration into the ocean of large amounts of carbon that would accumulate in the atmosphere and naturally enter the ocean over a longer timespan. Some technologies for $CO_2$ ocean sequestrations have been developed as a nation project. However, $CO_2$ ocean sequestrations are attractive because they have the advantage of vast capacity sequestration far away from industrial areas, and offer easier monitoring whereas less economic advantage has been indicated as one of the key barriers compared with $CO_2$ geosphere sequestration, which is produced as a byproduct. In this paper, a conceptual design for $CO_2$ ocean sequestration is introduced, and the preliminary examination is described. As a result, the $CO_2$ price, US$ 24/t shows far away from the economics. The causes come from the expensive $CO_2$ recovery cost and the low $CO_2$ price. The expensive $CO_2$ recovery cost is because too much electricity and water are consumed. In order to look for an economic balance point for $CO_2$ ocean sequestration, NPV=0, it is increases the $CO_2$ price. Finally 60.4$ per ton is found to be the balance price.

Keywords

References

  1. 朴洗憲, 山崎哲生, 島田平, 山本恭久. 2002. コバルトリッチクラストのポテンシャル比較手法の開發. 資源と素材, 118, 641-649.
  2. 朴洗憲, 山崎哲生, 鈴木英之. 2005. ハイブリッドシステム化による海洋隔離と深海底資源開發成立の可能性評價. 第18回海洋工學シンポジウム, 日本造船學會, OES-17.
  3. 石炭開發技術協力センタ一. 1993. よくわかる資源の經濟性評價. Tokyo. 208 p.
  4. 新エネルギ一産業技術總合開發機構. 1995. 二酸化炭素の海洋隔離技術にする基礎調査 NEDO-GET-9407. 200 p.
  5. 新エネルギ一産業技術總合開發機構. 2002. 二酸化炭素の炭層固定化技術にする基礎調査. 51401187-0-01. 251 p.
  6. 新エネルギ一産業技術總合開發機構. 2003. 地球溫暖化對策技術開發にする調査(II).二酸化炭素地中貯留技術にする動向調査. 02005038-0-1. 329 p.
  7. 鈴木信市. 2003. パイプラインの直徑設計. Personal Communication, 石油天然가스.金屬鑛物資源機構.
  8. 電力中央硏究所. 1995. 化學吸收式回收技術の評價, 32-56.
  9. 中內關文. 2004. 液化炭素ガスの貯藏設備コスト. Personal Communication, (株)日本酸素.
  10. 한국감정원. 1999. 유형고정자산 내용년수표. ISBN 89-88365-01-1. 425 p.
  11. 해양연구원. 2004. $CO_2$ 가스 해양격리시스템 연구개발 타당성 기획연구. 해양수산연구개발사업보고서. 382 p.
  12. Andrews, B.V., J.E. Flipse, and F.C. Brown. 1983. The economic viability of a four-metal pioneer deep ocean mining venture. Texas A&M University College Station, Texas. 201 p.
  13. Aya, I., K. Yamane, and K. Shiozaki. 1999. Proposal of self sinking $CO_2$ sending system: COSMOS. p. 269-274. In: Proc. 4th Int. Conf. Greenhouse Gas Control Technologies. Pergamon.
  14. Aya, I., R. Kojima, K. Yamane, P.G. Brewer, and E.T. Peltzer. 2003. In situ experiments of cold $CO_2$ release in mid-depth. p. 739-745. In: Proc. 8th Int. Conf. Greenhouse Gas Control Technologies. 1.
  15. Brewer, P.G., G. Friederich, E.T. Peltzer, and F.M. Orr Jr. 1999. Direct experiments on the ocean disposal of fossil fuel $CO_2$. Science, 284, 943-945. https://doi.org/10.1126/science.284.5416.943
  16. Chadwick, R.A., P. Zweigel, U. Gregersen, G.A. Kirby, S. Holloway, and P.N. Johannessen. 2003. Geological characterization of $CO_2$ storage site: lessons from sleipner, northern North Sea. p. 321-325. In: Proc. 8th Inter. Conf. Greenhouse Gas Control Technologies. 1.
  17. Dewey, R., G. Stegen, and M. Ozaki. 2000. Ocean dispersion of $CO_2$ from a moving ship source. p. 457-462. In: Proc. 5th Int. Conf. Greenhouse Gas Control Technologies. Cairns, Australia. 1.
  18. Gunter, W.D. T. Gentzis, B.A. Rottenfusser, and R.J.H. Richardson. 1997. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse gas emissions. Energy Convers. Mgt., 38, 217-222. https://doi.org/10.1016/S0196-8904(96)00037-4
  19. Gunter, W.D.S. Wong, D.B. Cheel, and G. Sjostrom. 1998. Large $CO_2$ sinks: Their role in the mitigation of greenhouse gases from an international, national (Canadian) and provincial (Alberta) Perspective. Appl. Energ., 61, 209-227. https://doi.org/10.1016/S0306-2619(98)00042-7
  20. Herzog, H. and D. Golomb. 2004. Carbon capture and storage from fossil fuel use. Encyclopedia of Energy, 1, 1-11.
  21. Hillman, C.T. and B.B. Gosling. 1985. Mining deep ocean manganese nodules: Description and economic analysis of a potential venture. US Bureau of Mines. IC 9015. 19 p.
  22. IEA Greenhouse Gas. 2001. Putting carbon back in the ground. IEA Greenhouse Gas R&D Programme, Cheltenham, UK. 26 p.
  23. IEA Greenhouse Gas. 2003. Potential for improvement in gasification combined cycle power generation with $CO_2$ capture. IEA Greenhouse Gas R&D Programme. Cheltenham, UK, Report PH4/19.
  24. Koide, H. 2000. Geological storage research. Eco Ind., 5(4), 19-27.
  25. Koide, H., T. Ohsumi, M. Uno, S. Matsuo, T. Watanabe, and S. Hongo. 2003. Japanese R&D project for $CO_2$ geological sequestration. p. 317-320. Proc. 8th Int. Conf. Greenhouse Gas Control Technologies. 1.
  26. Kosugi, S., K. Niwa, T. Saito, T. Kajishima, and K. Hamaogi. 2001. Design factors in gas-lift advanced dissolution (GLAD) system for $CO_2$ sequestration into the ocean. Chem. Eng. Sci., 56, 6205-6210. https://doi.org/10.1016/S0009-2509(01)00210-X
  27. Kvamme, B. 2001. Droplets of dry ice and cold liquid $CO_2$ for self transport of $CO_2$ to large depth. p. 498-505. In: Proc. 11th Int. Soc. Offshore and Polar Eng. Conf. (ISOPE-2001). Stavanger, Norway, 1.
  28. Ledwell, J.R., E.T. Montgomery, K.L. Polzin, L.C. StLaurent, R.W. Schmitt, and J.M. Toole. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403(1), 179-182. https://doi.org/10.1038/35003164
  29. Mariz, C., L. Ward, G. Ganong, and R. Hargrave. 1999. Cost of $CO_2$ recovery and transmission for EOR from boiler stack gas. p. 229-234. In: Proc. 4th Int. Conf. Greenhouse Gas Control Technologies. Interlaken, Switzerland.
  30. Murai, S., T. Ohsumi, F. Nishibori, and M. Ozaki. 2003. The second phase of Japanese R&D program for $CO_2$ ocean sequestration. p. 733-738. In: Proc. 8th Int. Conf. Greenhouse Gas Control Technologies. 1.
  31. National Energy Technology Laboratory. 2002. Carbon sequestration technology roadmap. U.S. Department of Energy, Pittsburgh, PA. 23 p.
  32. Ozaki, M., T. Ohsumi, and S. Masuda. 1999. Dilution of released $CO_2$ in mid ocean depth by moving ship. p. 175-180. In: Proc. 4th Int. Conf. Greenhouse Gas Control Technologies. Interlaken, Switzerland.
  33. Parson, E.A. and D.W. Keith. 1998. Fossil fuels without $CO_2$ emissions. Science, 282, 1053-1054. https://doi.org/10.1126/science.282.5391.1053
  34. Rao, A.B. and E.S. Rubin. 2002. A technical, economic and environmental assessment of amine-based carbon capture technology for power plant greenhouse gas control. Environ. Sci. Technol., 36(20), 4467-4475. https://doi.org/10.1021/es0158861
  35. Rubin, E.S. and A.B. Rao. 2003. Uncertainties in $CO_2$ capture and sequestration costs. p. 1119-1124. In: Proc. 8th Int. Conf. Greenhouse Gas Control Technologies. 2.
  36. Saito, T., T. Kajishima, K. Tsuchiya, and S. Kosugi. 1999. Mass transfer and structure of bubby flows in a system of $CO_2$ disposal into the ocean by a gas-lift column, Chem. Eng. Sci., 54, 4945-4951. https://doi.org/10.1016/S0009-2509(99)00216-X
  37. Saito, T., T. Kajishima, and R. Nagaosa. 2000. $CO_2$ sequestration at sea by gas-lift system of shallow injection and deep releasing. Environ. Sci. Technol., 34, 4140-4145. https://doi.org/10.1021/es990155a
  38. Saito, T., S. Kosugi, T. Kajishima, and K. Tsuchiya. 2001. Characteristics and performance of a deep-ocean disposal system for low-purity $CO_2$ gas via gas lift effect. Energy & Fuels, 15, 285-292. https://doi.org/10.1021/ef0002501
  39. Soreide, F., T. Lund, and J.M. Markussen. 2001. Deep ocean mining reconsidered a study of the manganese nodule deposits in Cook Island. p. 88-93. In: Proc. 4th ISOPE Ocean Mining Symp. Szczecin, Poland.
  40. Tsuchiya, K., T. Saito, T. Kajishima, and S. Kosugi. 2001. Coupling between mass transfer from dissolving bubbles and formation of bubble-surface wave. Chem. Eng. Sci., 56, 6411-6417. https://doi.org/10.1016/S0009-2509(01)00278-0
  41. Wong, S., W.D. Gunter, and M.J. Mavor. 2000. Economics of $CO_2$ sequestration in coalbed methane reservoirs. Proc. 2000 Soc. Petrol. Engineers Int. Gas Technology Symp., Calgary, Canada. SPE 59785.