DOI QR코드

DOI QR Code

Probability Based Determination of Slab Thickness Satisfying Floor Vibration Criteria

수직진동 사용성 기준을 고려한 바닥판 두께 제안

  • Lee Min-Jung (Dept. of Architectural Engineering, Hanyang University) ;
  • Nam Sang-Wook (Dept. of Architectural Engineering, Hanyang University) ;
  • Han Sang-Whan (Dept. of Architectural Engineering, Hanyang University)
  • Published : 2005.10.01

Abstract

In current design practice, the thickness of the floor slab has been determined to satisfy requirement for deflection control. However, previous study shows that the floor thicknesses in residential buildings may not satisfy the floor vibration criteria, even though the thickness is determined by the serviceability requirements in current design provisons. Thus it is necessary to develop the procedure to determine slab thickness that satisfies the floor vibration criteria. This study attempts to propose slab thickness for flat plate slab systems that satisfies floor vibration criteria against occupant induced floor vibration(heel drop load). Two boundary conditions(simple and fixed support), three square flat plates(4, 6, 8m), and five concrete strength($18\~30$ MPa) are considered. Since there are large uncertainties in loading and material properties, probabilistic approach is adopted using Monte-Carlo simulation procedures.

건설 재료와 기술의 발달로 건축물이 장스팬화 ·경량화 되어 가고 있다. 이로 인해 건축물 바닥의 고유진동수(Frequency)와 감쇠비(damping ratio)가 감소함에 따라 거주자들의 바닥판의 수직진동에 대한 문제가 발생하고 있다 그러나 현행 사용성 기준은 바닥판의 최대 정적 처짐에 의해 결정하고 있다. 하지만 선행연구(Han et al., 2003)에서 현행 기준을 만족하는 바닥이 수직진동에 대한 사용성 기준을 만족하지 못하는 것을 볼 수 있다. 따라서 본 연구에서는 거주자들의 뒤꿈치 충격하중에 대한 수직진동 사용성 기준을 만족하는 바닥 두께를 제안하고자 하였다. 슬래브 재료의 특성과 뒤꿈치 충격하중 및 마감 고정하중의 불확실성을 고려하기 위해 Monte Carlo Simulation을 사용하여 확률적으로 접근하였다. 그 결과 4변 단순지지의 경우 두께가 스팬 길이의 $1/14\~1/17$에서, 4변 고정지지의 경우 스팬 길이의 $1/18\~1/25$인 경우에 초과 확률이$0\%$에 도달하였다.

Keywords

References

  1. American Concrete Institute, Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, 2002, pp.102-106
  2. 한국콘크리트학회, '콘크리트구조설계기준 . 해설' 한국콘크리트학회, 2003, pp79-85
  3. 한상환, 이민정, '기존 아파트 바닥의 수직진동 성능평가', 콘크리트학회 논문집, 16권 2호, 2004, 4, p.221-228
  4. Architectural Institute of Japan, Guidelines for The Evaluation of Habitability to Building Vibration, Architectural Institute of Japan, 1991, pp.l-10
  5. Murray, T. M, Allen, D. E., and Unger, E.E., 'Floor Vibration Due to Human Activity', AISC Steel Design Guide Series, No.11 AISC, 1997, pp.1-10
  6. Lenzen. K H, 'Vibration of Steel Joist Concrete Slab Floors', Engineering Journal, Vol.3, No.3 1996, pp.133-136
  7. Wiss, J. F. and Parmelee, R. A, 'FHuman Perception of Transient Vibrations', Journal of Structural Division, Vol.100, No. ST4, ASCE, Apr. 1974, pp.773-787
  8. Allen, D. E. and Rainer, J. H, 'Vibration Criteria for long-span Floors', Canadion Journal of Civil Engineering, National Research Council of Canada, Vol.3, No.2, Jun. 1976, pp.165-173 https://doi.org/10.1139/l76-017
  9. International Organization For Standardization, Evaluation of Human Exposure to Whole-body Vibration- Part 2: Cantinuous and shock-induced vibration in buildings, ISO2631-2, 1989, pp.1-11.
  10. Szilard, R, Theory and Analysis of Plate : Classical, Numericad and Engineering Method, Prince-Hall, 1974, pp.408-409
  11. Choi, B. S., Oh, B. H, and Scanlon, A, 'Probabilistic Assessment of ACI 318 Minimum Thickness Requirements for One-way Members', ACI Structural Journal, Vol.99, NO.3, 2002, pp.344-351
  12. Lenzen, K H. and Murray, T. M, Vibration of steel beam concrete slab floor systems, Dept, of Civil Engineering, University of Kansas, Lawrence, Kans., Report No.29, 1969
  13. Foschi, R.O., Neumann, G.A, Yao, F., and Folz, B., 'Floor Vibration Due to Occupants and ReliabilityBased Design Guidelines', Canadian Journal of Civil Engineering, Vol.22, 1995, pp.471-479 https://doi.org/10.1139/l95-055
  14. Ang, A. H-S and Tang, W. H, Probability Concepts in Engineering Planning and Design Volumn I, II, Wiley, 1990, pp.274-332

Cited by

  1. Evaluation of Vertical Vibration of a High-rise Steel Building Caused by Human Group Rhythmic Activities vol.13, pp.4, 2013, https://doi.org/10.9798/KOSHAM.2013.13.4.007