References
- Snell, L.M., Van Roekel, J.V., and Wallace, N.D., 'Predicting Early Concrete Strength', Concrete International, VoI.11, No.12, 1989, pp.43-47
- Popovics S., 'History of a mathematical model for strength development of Portland cement concrete', ACI Materials Journal, Vol.95, No.5, 1998, pp.593-600
- Oh, J. W., Lee, I.W., Kim, J. T., and Lee, G. W., 'Application of Neural Networks for Proportioning of Concrete Mixes', ACI Material Journal, Vol.96, No.1, 1999, pp.61-67
- Lee, S.C., Prediction of Concrete Strength Using Artificial Neural Networks, Engineering Structures, Vol. 25, 2003, pp. 849-857 https://doi.org/10.1016/S0141-0296(03)00004-X
- Kim, J. I., Kim, D. K., Feng, M. Q., and Yazdani, F., 'Application of Neural Networks for Estimation of Concrete Strength', Journal of materials in Civil Engineering, ASCE, Vol.16, No.3, 2004, pp.257-264 https://doi.org/10.1061/(ASCE)0899-1561(2004)16:3(257)
- Touretzky, D.S., Thibadeau, R.H. and Romero, R.D., 'Optical Chinese character recognition using probabilistic neural networks', Pattern recognition, Vol.30, No.8, 1997, pp.1279-1292 https://doi.org/10.1016/S0031-3203(96)00166-5
- Raghu, P.P. and Yegnanarayana, B., 'Supervised texture classification using a probabilistic neural network and constraint satisfaction model', IEEE transactions on neural networks, Vol.9, No.3, 1998, pp.516-522 https://doi.org/10.1109/72.668893
- Lin, S. H., Kung, S. Y., and Lin, L. J., 'Face recognition/detection by probabilistic decision-based neural network', IEEE transactions on neural networks, Vol.8, No.1, 1997, pp.114-132 https://doi.org/10.1109/72.554196
- Chtioui, Y., Bertrand, D., Devaux, M.E and Barba, D., 'Comparison of multilayer perceptron and probabilistic neural networks in artificial vision, Application to the discrimination of seeds', Journal of chemometrics, Vol. 11, No.2, 1997, pp.111-129 https://doi.org/10.1002/(SICI)1099-128X(199703)11:2<111::AID-CEM455>3.0.CO;2-V
- Wang, Y., Adali, T., Kung, S. Y., and Szabo, Z., 'Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach', IEEE transactions on image processing, Vol. 7, No.8,1998, pp.1165-1181 https://doi.org/10.1109/83.704309
- Holmes, E., Nicholson, J. K., and Tranter, G., 'Metabonomic Characterization of Genetic Variations in Toxicological and Metabolic Responses Using Probabilistic Neural Networks', Chemical research in toxicology, Vol.14, No.2, 2001, pp.182-191 https://doi.org/10.1021/tx000158x
- Zaknich, A., 'Introduction to the modified probabilistic neural network for general signal processing applications', IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, Vol. 46, No.7, 1990, pp.1980-1990
- Yang, Z. R., Platt, M. B., and Platt, H. D., 'Probabilistic Neural Networks in Bankruptcy Prediction', Journal of business research, Vol. 44, No.2, 1999, pp.67-74 https://doi.org/10.1016/S0148-2963(97)00242-7
- Goh, A. T. C., 'Probabilistic neural network for evaluating seismic liquefaction potential', Canadian geotechnical journal: Revue canadienne de geotechnique, Vol.39, No.1, 2002, pp.219-232 https://doi.org/10.1139/t01-073
- Aoki, T., Ceravolo, R., De Stefano, A., Genovese, C., and Sabia, D., 'Seismic vulnerability assessment of chemical plants through probabilistic neural networks', Reliability engineering & system safety, Vol.77, No.3, 2002, pp.263-268 https://doi.org/10.1016/S0951-8320(02)00059-5
- Sinha, S. K. and Pandey, M. D., 'Probabilistic Neural Network for Reliability Assessment of Oil and Gas Pipelines', Computer-aided civil and infrastructure engineering, Vol. 17, No.5, 2002, pp.320-329 https://doi.org/10.1111/1467-8667.00279
- M.R. Berthold and J.Diamond, 'Boosting the performance of RBF networks with dynamic decay adjustment', Advances in Neural Information Processing Systems, No.7, 1995, pp.521-528
- M.R. Berthold, 'A probabilistic extension for the DDA algorithm, in: Int. Conf. on Neural Network', IEEE, New York, Vol.1, 1996, pp. 341-346
- Specht, D. F., Probabilistic Neural Networks, Neural Networks 3, 1990, pp. 109-118
- Parzen, E., 'On estimation of a probability density function and mode', Annals of Mathematical Statistics, Vol.33, 1962, pp1065-1076 https://doi.org/10.1214/aoms/1177704472
- Cacoullos, T. 'Estimation of a multivariate density', Annals of the Institute of Statistical Mathematics, Tokyo, Vol.18, No.2, 1966, pp.179-189 https://doi.org/10.1007/BF02869528
- M.R. Berthold and J. Diamond, Constructive training of probabilistic neural networks, Neurocomputing, 1998, pp. 167-183
- Jin, X., Cheu, R.L., and Srinivasan, D, 'Development and adaptation of constructive probabilistic neural network in freeway incident detection', Transportation Research Part C, Vol.10, 2002, pp.121-147 https://doi.org/10.1016/S0968-090X(01)00007-9
- ASTM. 'Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens', Annual Book of ASTM Standards: ASTM39-93a, Vol.4, No.2, 1992, pp.22-24
- Korean Standard Association, Stand Test Method for Compressive Strength of Cylindrical Concrete Specimens, KS F2405, 1997, 199pp
- Rumelhart, D. E., McClelland, J. L., & the PDP Research Group, Parallel distributed processing, Vol.1: Foudations. Cambridge, MA: The MIT Press., 1986