DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties Of Lead-free (Bi0.5Na0.5)TiO3-BaTiO3 Ferroelectric Ceramics

비납계 (Bi0.5Na0.5)TiO3-BaTiO3 강유전 세라믹 재료의 유전 및 압전 특성

  • Kuk Min-Ho (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Kim Myong-Ho (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Cho Jung-A (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Sung Yeon-Soo (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Song Tae Kwon (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Bae Dong-Sik (School of Nano & Advanced Materials Engineering, Changwon National University) ;
  • Jeong Soon-Jong (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group) ;
  • Song Jae-Sung (Korea Electrotechnology Research Institute, Electric and Magnetic Devices Research Group)
  • 국민호 (창원대학교 나노 신소재 공학부) ;
  • 김명호 (창원대학교 나노 신소재 공학부) ;
  • 조정아 (창원대학교 나노 신소재 공학부) ;
  • 성연수 (창원대학교 나노 신소재 공학부) ;
  • 송태권 (창원대학교 나노 신소재 공학부) ;
  • 배동식 (창원대학교 나노 신소재 공학부) ;
  • 정순종 (한국전기연구원 전자기소자그룹) ;
  • 송재성 (한국전기연구원 전자기소자그룹)
  • Published : 2005.11.01

Abstract

The structural, piezoelectric and ferroelectric properties of $(1-x)(Bi_{0.5}Na_{0.5})TiO_3$ x=0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) ceramics were investigated. A gradual change in the crystal and microstructures with tile increase of $BaTiO_3$ (BT) concentration was observed. The $(Bi_{0.5}Na_{0.5})TiO_3$ (BNT) samples show unusual properties as ferroelectric relaxer materials. We observed a phase transition in BNT solid solutions with BT having normal ferroelectric phase transition. At room temperature, BNT presents a single phase without the morphotropic phase boundary (MPB). In the case of samples doped with $4\~8 mol\%$ BT, rhombohedral-tetragonal MPB was formed and the piezoelectric properties were improved.

Keywords

References

  1. G.A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Kranik, Sov. Phys. Solid State(Engl. Transl.)., 2(11), 2651 (1961)
  2. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys., 30(9B), 2236 (1991) https://doi.org/10.1143/JJAP.30.2236
  3. N. Ichinose and K. Udagawa, Ferroelectrics, 169, 317 (1995) https://doi.org/10.1080/00150199508217344
  4. T. Takenaka, T. Okuda and K. Takegahara, Ferroelectrics, 196, 175 (1997) https://doi.org/10.1080/00150199708224156
  5. A. Herabut and A. Safari, J. Am. Ceram. Soc., 80(11), 2954 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03219.x
  6. T. Takenaka, Ferroelectrics, 230, 87 (1999) https://doi.org/10.1080/00150199908214902
  7. H. Nagata and T. Takenaka, J. Eur. Ceram. Soc., 21, 1299 (2001) https://doi.org/10.1016/S0955-2219(01)00005-X
  8. B. J. Chu, D. R. Chen, G. R. Li and Q. R. Yin, J. Eur. Cerarn. Soc., 22, 2115 (2002) https://doi.org/10.1016/S0955-2219(02)00027-4
  9. Y. G. Wu, H. L. Zhang, Y. Zhang, J. Y. Ma and D. H. Xie, J. Mater. Sci., 38(5), 987 (2003) https://doi.org/10.1023/A:1022333427521
  10. I. P. Pronin, P. P. Syrnikov and V. A. Zaitseva, Ferroelectrics, 25, 395 (1980) https://doi.org/10.1080/00150198008207029
  11. V. A. Isupov, I. P. Pronin and T. V. Kruzina, Ferroelectrics Letters, 2, 205 (1984) https://doi.org/10.1080/07315178408202440

Cited by

  1. Film by Sol-Gel vol.22, pp.12, 2012, https://doi.org/10.3740/MRSK.2012.22.12.696