J. Korea Soc. Math. Educ. Ser. B: Pure Appl. Math. ISSN 1226-0657
Volume 12, Number 4 (November 2005), Pages 237-251

NOVEL METHOD FOR CONSTRUCTING NEW WAVELET
ANALYSIS

YINGZHEN LIN AND MINGGEN CUl

ABSTRACT. In this paper, a new wavelet analysis of differential operator spline is
generated, and it is of the symmetry and (3 — ¢)-order regularity (0 < £ < 3).
Finally, using this wavelet basis, we expand Lebesgue square integrable functions
efficiently and quickly.

1. INTRODUCTION

Wavelets are studied by several authors for a long time (c¢f. Chui [1]; Chui &
Wang (2, 3]; Cui [4]; Cui, Lee & Lee [5]; Daubechies {6]; Kontorovich & Krylov [7, 8]).

Chui & Wang [2, 3| constructed a multiresolution analysis based on polynomial
spline function, from the view of operator spline, it is constructed by the solution of
the fourth order differential equation

L(D)u = D*u(z) = §(z) and g(z) =23,
where z, =z for z > 0, 24+ = 0 for z < 0, through
Vi = {Vi,g} = {u|u(@) = 3 Cin 9@z - k), Ci)iez e ) (11)
JEZ

for ke Z.

When L(D) # D™ m € Z* = {0,1,2,...}, we may prove that, by using the
solution of differential equation

L(Dyu= Cpd(z —k), (Ci)rez € £*
keZ .

and the method of (1.1), it is not possible to obtain a multiresolution analysis.

In this paper, we get the following results:
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a. Based on a solution g(x) of generalized differential equation, we obtain a wavelet
analysis {V}, 9} ez defined by (1.1). Here, we directly defined a wavelet analysis
not using multiresolution analysis. Then we prove that W;={W;, g} defined in
this paper satisfies the definition of usual wavelet analysis.

b. This wavelet analysis is symmetry and has regular order which can be close to 3
arbitrarily.

c. A new method is given to expand a Lebesgue square integrable function according
to this wavelet basis. It is worth to emphasize that when function is expanded
using this method, it is enough to calculate some function-values, better than

inner-product.

2. A DIFFERENTIAL OPERATOR SPLINE FUNCTION

Let D be the first differential operator, I be the unit operator, then it is easy
to verify that for every t € R, g(z —t) = 2ele=tl — Le=2==tli5 a solution of

generalized differential equation
L(D) = (D* - 5D* + 4u = 6(z — t). (2.1)
For a partition II: {k}kez, let us denote the spline function space of differential
operator by S(II, L(D))
S, L(D)) = {u|u(z) = Y Congla ~ k), (Cin)irez € A}, (2:2)
keZ
where set A = {(Cjk)jkez | Cix €R, 2 ez C’fk < +oo}. In the following, we will
write -
Wy = S(IL, L(D)).
It is obvious that Y ;. Coxg(z — k) satisfies the following equation:
(D* - 5D* +4l)u =Y _ Coxd(z — t). (2.3)
kEZ
Taking Fourier transform for both sides of (4), we have
(1+w?)(d+wdiw) =) Cope™*,
keZ
Therefore, Wy can again be defined as

1
Wo={u

(1+w?)(4+ w?

aw) = TONTE P<2w)} , (2.4)
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where P(27) denotes the set of all functions with period equaling to 27, {Cox}rez
denotes the Fourier coefficients of pp(w).
For every j € Z, let

Wy = {Wi,g) = {u|u(e) =28 S Ciug@z— k), Capinez € 4} (25)
keZ :

From (2.1), it follows that g(27z — k) satisfies the following equation.

Namely,
kEZ

where (Cjx)jkez € A. Taking Fourier transform for both sides of (2.7), we get
(1+27%50% + 27940t i(w) = ) 2730 e 27k, (2.8)
. keZ
Hence, W; can again be denoted as

o4

W; = {u‘ﬁ(w) T AF 2L+ 2—2ﬂ'w2)“j(w)’ & P(2j+17r)} @9

where P(2/717) denotes the set of all functions with period 2/*}7, and {Cji};kez

can be denoted as the Fourier coefficients of p;(w). We have (Cjx);rez € A.

3. THE PROPERTIES OF W;

1

—lel _ = =22l then

1
Lemma 3.1. Suppose that g(z) = ke

> 1g(w + 2km)|?

keZ

_ 1 116(1 —12e —€* +32(3 — e + 3¢® + €°) cosw)
1728 [ (1 + €2 — 2ecosw)?
38(e* — 1)(1 + €* — 2¢? cosw) + 24(—2€% + (1 + €*) cosw)
+ (1 + e* — 2e2 cosw)?

], (3.1)

1
1 +w?)(4+w?)

where §(w) = is the Fourier transform of g(z).
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Further we get that Y, ., | §(w+2k~)|? has the following positive upper boundary
and low boundary (using Mathematica 4.0), respectively,

M ~0.0279948 and m ~ 0.0082535.-

Theorem 3.2. W;, j € Z, defined by (2.5), have the following properties:
i) W:NW; ={0}, i#j, i,jeZ;
(ii) {g9(x — k)}x € Z is a Riesz basis of Wy,
(ili) (translation invariance) If u(z) € Wy, then u(z — k) € Wy, k € Z;
(iv) (dilatation) If u(z) € Wj, then u(2z) € Wj41; and
(v) L2(R) = @jez W;.

Proof. From the definition of W, we can easily obtain (iii) and (iv). And (ii) is the
result of Lemma 3.1 (see Daubechies [6]). We will prove (i) by contradiction.
Let us assume u(z) € W, (W, u(z) #0, 4,5 € Z, £ < j. By (2.9) we get
9-% 9~}

A1 2+ 72 M) = Trrvona s 7w

where p, € P(2¢17), p; € P(27+1x). Since £ < j, 50 pg(w) € P(27+17). Therefore
(1 + 27202)(4 + 27%0?)
(1+2"2w?)(4+ 2-%w?)

which yields the contradiction.

W(w) =

€ P(29+1m),

In order to prove (v), we first give two lemmas.

Lemma A. Suppose ii(w) € C®(R), where CP(R) = Ly(R)(C®(R), L2(R) =
{i(w)lu(z) € LA(R)}. And let g(z) = e~ Iol — Le=2el then

> (2 (w + 2km)) §w + 2kn)
kE€Z

w+1 w—1

_ & (oq(—9i — 2a(%i
=5 <2u( 27%) cot 24(271) cot
w—21

+ @(2714) cot — @(—27F14) cot

where § and G denote the Fourier transforms of g and u, respectively, and
() 1
w) = .
I A+o2)(d+o?)

Proof. Take a square loop Cy, with vertex (n=£ %)(il +1) on the complex plane, then
in the loop C, function 7 coth(wz) has first order pole at z = +k, k =0,1,...,n.
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But z = +k, k=0,1,...,n, are not poles of the function

(29 (w + 2z7)
1+ (2rz +w)2)(d+ 27z + w)?)’
For a fixed w, by choosing n big enough, f(z) has the first order poles at
w—1 w1 w—2 w421
om0 BT T BT Ty - 2’

y A4 = —
then the residues of the function

f(z) =

a1 = —

1
(1+ 27z + w)?) (4 + (272 + w)?)
i i i i
by =——- =—b=—5b=—_)
areby = - be=on =g = o
By the residue theorem, we have

at z = a1, ag, as, aq, respectively.

/ meot(mwz) f(z) dz = 2m’( Z f(k) +b1+ba+ b3+ b4) (3.3)

tn k=—n

Since on Cy, |f(2)] = O(|z]™*), |cot(r2)| = O(1) as |z| — oo,

/ weot(mwz) f(z)dz

C
5—3—>Oasn-—>oo,
Cn n

where C is a constant. Now taking limits about n, in expression (3.3), we get

> (2 (w + 2km)) §lw + 2km)
keZ
_ 4 (29 (w + 2k))
kezz 1+ (27rk +w)?)(4 + 27k + w)?)

w=—1
2
w21

— 24(274) cot

— 4(=27%14) cot O

o
+ a(27+19) cot wt ).

Lemma B. {g(2/z — k)}; xez is a complete system of L?(R).

Proof. {g(2'z — k)}; kez is a complete system of L?(R) if and only if

{(9(2z — k)" (w)}

is a complete system of I:Z(R). C(R) is dense in L2 (R) obviously, so we only need
to show {(9(2'z — k))"(w)},,kez is a complete system in C2°(R). In fact, for any
t(w) € CP(R), if

(&w), 9Pz - k)" @)p = 0,
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then, for k € Z,

(@(w), (9(@z = k)" (W) =277 /R (W) §(2Vw) e do
= / ﬁ(2jw) g(w) e~wki g,
R

27(€+1) ) )
-3 / UDw) §(w) e duw
2

tez 2t
2m . .
- / [Z (2 (w + 20m)) §(w + 2&))] e~k du
0 “rez
= 0,

thus, for w € [0, 27],
> (2 (w + 26m)) (w + 2m)) = 0.
L€z

From Lemma A, it follows that, for w € [0, 27],

w1 w—1

20(—274) cot 5 — 20(274) cot

w = 2 w+2

=0 (34)

Since cot(“f%), cot(¥5?), cot(£$2) and cot(%5%) are linearly independent, we have

+ 4(27F14) cot — 4(=27%19) cot

w(=2%1) = 4(24) =0, jeZ (3.5)
Owing to 4(w) € CP(R), it follows that @(z) is an analytic function. Therefore
from (3.5) @(w) = 0. This completes the proof of Lemma B. O

Now, we set up to prove (v) in Theorem 3.2. :
Using the completeness of {g(2’z — k)}; kez in L%(R). We have, for every u €
L*(R), there exists (Cji);,kez € A, such that
wz)= Y Cipg@z-k)=) uj, u€W; (3.6)
J, k€L JEL
Hence L%(R) C @D,z W;j. On the other hand, for u; € W;, we have
uj(z) =28 > Cjg(2z — k).
kez
So that,

a5(w) =273 3 Cre 27wk g(270)
keZ
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1
. ~'L2 Jwk
=27 kEZZC 1+ (277w)2)(4 + (279w)?)

2- ZNJ(‘U)
(1+(2 Tw)) (4 + (27Iw)?)’

where p;(w) = > ez Cik e~277kT ¢ p(2itin),

Hence:

@)l = 5 [ 186) do

1 2
-5 Jlareomar el

1 1 ;
T o /R A aaT @l

1 2(e+1)7r 1 .
| 5 1 () P

o7 2 fe (14 D)@+ w2))
= iZ/ 7 1 |5 (2 w) [P
Tz o (U (wr2mP)(E+ (w+ 2m))
Using Lemma 3.1, we obtain
2T .
@y < K [ @) o
2+l
e JK/ s ()P do = K 37 C2, < +00.

keZ
Further, from the condition }; 4.7 C k < oo, it follows that u = 3 u; € € L*(R).
So,

L*R) =P W;. O

JEZ

4. THE DEFINITION OF WAVELET ANALYSIS OF
DIFFERENTIAL OPERATOR SPLINE

Let D be a differential operator and L(D) be an m-order polynomial about D

with constant coefficients, g(z —t) as the solution of generalized differential equation:

L(D)u=46é(z—1t), teR. (4.1)
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For a partition I : {k}xez, let
S(IL L) = {u | u(z) = ZCOkg(:L‘ ~ k), (¢jk)jkez € A}. (4.2)

keZ
And write Wp = S(II, L). We know that 3, ., Corg(z — k) satisfies the following

differential equation:

L(D)u = Cord(z — k). (4.3)
keZ
Take Fourier transform for both sides of (4.3), we get
[L(D)uNw) = L(iw)i(w) =Y Core™™*. (4.4)
keZ
Therefore, W; can again be defined as
. 1
Wo = {u | 4(w) = mug(w), Ko € P(27r)}, (4.5)

where P(27) is the set of all functions with period equaling to 27 and the Fourier
coefficients {Co }rez of the function po(w) satisfies (Cji); kez € A.
For j € Z, let

W, = {u]u(z) = 28 Y Cii g2 — k), (Cir)skez € A} (4.6)
keZ
From (4.1), it follows that g(27z — k) satisfies differential equation
L2 9 D)u=6(2z—1t), teR (4.7)

or

u(e) =28 Y Cji g(2iz — k)
keZ
satisfies differential equation

L(2_jD)u = 2% Z Cik 5(2793 - k), (Cjk)j, kez € A. (4.8)
kEZ
Take Fourier transform for both sides of (24),we get
L iw)i(w) = 278 Y Cjem 77k, (4.9)
kEZ
Therefore, W; can again be denoted as

w) =244 e P}, (4.10)

W = {“ L(2 7iw)

Definition 4.1. Suppose that g(2/z — k) and Wj, j, k € Z, defined above. If Wj
is a closed subspace of L%(R) and W; satisfies the following conditions:
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() WeNW; = {0}, £#3, £, j € Z;
(ii) {9(z — k)}kez is a Riesz base of Wp;
(iil) If u(x) € Wy, then u(z — k) € Wy, k € Z;
(iv) If u(x) € W, then u(2z) € Wji1,j € Z; and
(v) L*(R) = Bjez Wi
then {W}, g} is called a wavelet analysis about differential operator L(D), g is called
a wavelet basic function.

By the Definition 4.1 and Theorem 3.2, we get the following theorem

Theorem 4.1. Let L(D) = D* — 5D? + 4I. By using the function

1 _ 1
gla—t) = el — o

jz—t _ e—2|:1:—t|

where g is a solution of (4.1), we get that W;, (W}, g), defined by (4.6), is a wavelet
analysis of differential operator L(D) = D* —~ 5D% + 41.

5. THEOREM OF EXPANDING

In this section, by using the method of differential operator spline wavelet of
L(D) = D* — 5D? + 41, we will discuss the problem of expanding functions. In
this paper, we only discuss the expanding of functions which belong to the subset
of L*(R). Let

HY(R) = {u(z) | u,u’ are absolutely continuous functions and u,’,u” € L?(R)}

We define the inner product of H!(R) as follows, for j = 0,1,2,...,
((2), 9(2)) s

= /R (4 x 2u(z)v(z) — 5 x 279/ (2)v'(z) + 27 %" (z)v"(z)) dz

- %L(Q—fiw)ﬁ(w)ﬁ(w) dw

- % /R (14 (279w)2) (4 + (2770)?)ik(w)5(@) duw (5.1)

then H'(R) is clearly an inner-product space. We denote H'(R) by H}(R) according
to different inner products.
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Theorem 5.1. Let g(z) = % el — = e~ and let
b(w) = g(w)
(S rez§(w + 2km)[2(1 + (w + 2km)?) (4 + (w + 2km)2)]
then {®(z — k) }rez is an orthonormal system of H}(R).

(Sl

Proof. Clearly, for every £,k € Z, one has
(@(z — k), 2(z — ) my (w)

217r 1+ wd) (4 + w0 (z — b)Nw)®(z — HMNw) dw
217r (1+0)(4+ W) @w)l* e = duw

_ 1 / (1+w?)(4 + w?)|g(w)[2e~ k- Ny
21 Jr Sorezl0(w + 2km)P(1 + (w + 2km)2)(4 + (w + 2k7)2)]

_ 1 /“"*”" (L +w?)(4 + w?)|g(w) e itk-0w “
2 5 Jonn Y okezlld(w + 2km)|2(1 + (w + 2k7)2) (4 + (w + 2km)2)]
2T |
Jwt+2nmP
e dw
~or T%/ Y kez |9(w + 2kn)|?
1 2m .
- e—z(k—[)w dw
271' 0
1, £=k,
= { 0, (+£k -
Therefore, we obtain
. 2 29 1+ et — 2¢2
B(w) = ! 3(1+e ecosw)(1l + e* — 2e? cosw) (5.2)
(1+w?)(4+w?)(e—1) (e—1)(1+e)((1 + €)%+ 2ecosw)
Corollary 5.1. {®(2/z — k)}rez is an orthonormal system of H}(R)
Lemma 5.2. Let u(z) € H}(R), then
(u,g(2j:v - k))Hl =u(279k) (5.3)
J

1 . )
where g(z) = = e~ — — 72l i5 one solution of equation (2.1).

6 12
Proof. By assumption,

(u,g(2j:c — Ic))HJ1

_4x 21’/ w(@)g(2z — k) dz — 5 x 2—1‘/ Du(z)Dg(Pz — k) do
R R
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+27% /R D?*u(z)D?g(2x — k) dzx
=4x2 /IR u(z)g(¥z — k) dz - 5 /R Du(z)g'(2'z — k) dz
s /]R D?u(z)g (2 — k) da
=4 x /]Ru(2"jx)g(x —k)dr —5x277 /]RDu(2”jx)g'(ac ~— k) dz
+27% /R D*u(2772)g"(z — k) dx
=4 /R u(279z)g(x — k) dx -5 /R W' (2772)g (x — k) dz + /R u’'(27z)g" (z ~ k) dx

= / uw(279x)6(z — k) dz
= uﬂ;2‘j k).
Therefore, we have (u, g(2’z - k)) 1= = u(277k). O
Similarly, we have the following lemmas.
Lemma 5.3. Let u(z) € H'(R), then
(u(z), Bz — k))gy = [+ hl(K) (5.4
where ®(w) is given by (5.2).

h(w) = , (5.5)

3(1 + €2 — 2ecosw)(1 + e* — 2e? cosw)
1) (e—-1)(1+e€)((1+€)?+ 2ecosw)

and [u * h](z) is a convolution u(zx) and h(zx).
Lemma 5.4. Let u(z) € HY(R), then

(u(), (2 = k) gy = [u(277) x A()] (k) (5.6)
where h(z) is given by (5.5).

Let P;: H ]1 (R) — W; be an orthonormal projection operator, where W; is taken
as a subspace of H}(R):

Pju = Z(u(x), &2z — k))HJ;<I>(2j:L' — k). (5.7)
keZ

We define a sequence of functions r, according to the following formulas.

ro(z) = u(x),
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r1(x) = ro(z) — Poro(z),

Tn(Z) = ra—1(2) = Pp—1mn-1(2). (5.8)
Lemma 5.5. Suppose that r,(z) is defined by (5.8), then
m(277k) =0, j<n—-1, k€EZ, n>1. (5.9)

Proof. From 2-0-Vk = 2773(2k), it is enough to show that the conclusion is valid
forj=n-1
By (5.3), we have

(2’("_1)19)
= (ra(), 9" '~ k)
='('r'n_1(£8) n 17n— 1(37 3 g(zn 1 ))H1

n—1

)
= (rp-1(z), 9(2" 'z k))H — (Pac1rn-1(z), 92" 'z — k) i

-1 n—1

and, moreover
(Pn_lrn_l(x) , g(Z”_lx - k))H'rl»—l = (rn_l(x) , P, _1g(2"'1m — k:))H%_1
= (ra1(@), 92" 2~ ) g1,
where we used
Po1g(2" 'z — k) = g(2" 'z ~ k).
So that (2~ Dk) = 0, namely,
m(279k) =0, j<n-1, j€Z, n>1 a

Corollary 5.2. Suppose that P; is defined by (5.7) and r; by (5.8),

Pri(z) =Y [r;(271) * h()] (k)®(27z — k). (5.10)
keZ
Proof. 1t follows from (5.6) and (5.7) that

Pirj(z) = 3 (rj(2), @27z - k)) i3 (2 — ) (By (5.7))

kEZ
= " [r;(277) x k()] (k)@(2z — k). (By (5.6))

kEZ
This complete the proof. ]

Now we set up to establish the expanding theorem of u(z) € H*(R).
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Theorem 5.6. Suppose u(zx) € H'(R), then

o0
z) =Y Pri(z). (5.11)
§=0
Proof. Tt is obvious that
Z P, 1"/3 + T‘n ),

therefore, we only need to show
rn(z) = 0as n — oo,

for z € R.
(1) Take any finite interval [a,b] C R and z € (a,b), then there exist N > 0,
ki, kz € Z so that when n > N, 2-(n—Df; ¢ [a,b], i = 1,2. Noting that

ra (2~ VE) = 0,

we have zy € [a,b], and 7,(zo) = 0, hence

Y (z) = / () dt
Io
and

T b
' (@)] < / I (8) dt] < / I (6) dt
zo

<vb-a /w ®)2dt < Vb —a /r" (B)|2dt < Vb — allrn|l 2

From (5.8), it follows that

Irnlly = lirns1lF + 1 Parallfyy,
therefore
“"'n+1”§{}1 S ”"'n“%{}l‘
Further by (5.1), it is also true that
Il < e

which means that

0 < Iranlly, < Il
that is, ”Tn(x)”?q% is a monotonic decreasing sequence, thus, there exists an integer

J such that if n > J

I (2)] < 2vb - aC (5.12)
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where lim,_ [|[7(2)]| = C
(2) For any ¢ > 0 take Jo € N. If n > Jy, then there is k € Z such that
|z — 2= Dk| < —£—. From (5.9), (5.12) for n > Jy, we have

[ra(2)] = [ra(2) ~ (2~ V)|
= | (@lle =27 VE| <.

\/ 2Vb-aC"

Consequently, we obtain lim,_,o mp(z) = 0. a

6. REGULAR ANALYSIS OF THE WAVELET BASIC FUNCTION
BASED ON L(D) = D* —5D? + 41

1 1
Since g(z) = ge—lwl - Ee_m‘”l is a wavelet basic function based on L(D) =
D* — 5D? + 41, the Fourier transform of g(z) is
- 1
W) = T T o
Therefore, for every e >0, 0 <e < 3
/(1 + |w])* " G(w) dw < oo, (6.1)
R

where g(z) is an even function. Hence, we obtain the following theorem.

Theorem 6.1. The wavelet analysis {W;, gjez} based on L(D) = D* —5D? + 41 is
(3 — €)-order regular analysis (0 < & < 3) with symmetry.
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