Nonlinear Analysis of Prestressed Concrete Containment Structures Considering Slip Behavior of Tendons

긴장재의 슬립거동을 고려한 원자로 격납건물의 비선형 해석

  • 곽효경 (한국과학기술원 건설환경공학과) ;
  • 김재홍 (한국과학기술원 건설환경공학과) ;
  • 김선훈 (영동대학교 토목환경공학과) ;
  • 정연석 (한국원자력안전기술원)
  • Published : 2005.12.01

Abstract

This paper concentrates on the nonlinear analysis of prestressed concrete (PSC) containment structures. Unlike a commercialized program which adopts the perfect bond assumption between concrete and tendon in the analysis of PSC structures, a numerical algorithm to consider the slip effect, simultaneously with the use of commercialized programs such as DIANA and ABAQUS, is introduced in this paper For bonded tendons, the apparent yield stress of an embedded tendon is determined from the bond slip relationship. And for unbonded tendons, Correction for the strength and stiffness of unbonded internal tendons is achieved on the basis of an iteration scheme derived from the slip behavior of tendon along the entire length. Finally, the developed algorithm is applied to two PSC containment structures of PWR and CANDU to verify its efficiency and applicability in simulating the structural behavior of large complex structures, and the obtained result shows that both containment structures represent the ultimate pressure capacity larger than about 3 times of the design pressure.

이 논문에서는 프리스트레스트 콘크리트 구조로 건설된 원자로 격납건물의 극한내압평가를 위해 비선형 유한요소해석을 수행하였다. 특히, 상용프로그램 사용 시 콘크리트와 긴장재의 완전부착 가정으로 인해 고려할 수 없었던 콘크리트와 긴장재 사이의 슬립효과를 모사할 수 있는 알고리즘을 개발하였다. 부착된 긴장재의 경우 부착-슬립효과를 기초로 유도된 겉보기 항복응력으로 두 재료의 상호거동을 모사할 수 있고, 비부착된 긴장재의 경우 반복해석에 의해 긴장재 전체 길이방향으로의 슬립효과를 모사할 수 있다. 개발된 알고리즘을 이용하여 도출된 긴장재의 응력-변형률 관계를 이용하여 격납건물의 축소모델에 대한 비선형 해석을 수행하였고, 수행한 결과를 바탕으로 격납건물의 극한내압은 가압중수로형과 가압경수로형 모두 설계압력의 약 3배 이상 구조적 여유가 있음을 확인하였다.

Keywords

References

  1. ASCE Task Committee on Finite Element Analysis of Reinforced Concrete Structures(1982) State-of the Art Report on Finite Element Analysis of Reinforced Concrete, ASCE
  2. Balazs, G.L.(1992) Transfer control of Prestressing Strands, PCI Journal, pp.60-69
  3. Belarbi, A., Hsu, T. T. C.(1994) Constitutive Laws of Concrete in Tension and Reinforcing Bars Stiffened by Concrete, ACI Structural Journal, 91(4), pp.465-474
  4. Comite Euro International du Beton(1990) CEB FIP Model Code for Concrete Structures, Thomas Telford
  5. De Witte, F. C., Kikstra, W. P.(2002) DIANA 8.1 User's Manual - Element Library. Material Library, Analysis Procedures, TNO Building and Construction Research
  6. Fib Task Group on Bond Models(2000) Bond of Reinforcement in Concrete, International Federation for Structural Concrete (fib)
  7. Fib Task Group on Containment Strudures(2001) Nuclear Containments, International Federation for Structural Concrete (fib)
  8. Hessheimer, M. F., Pace, D. W., Klamerus, E. W., Matsumoto, T., Costello, J. F.(1997) Instrumentation and Testing of a Prestressed Concrete Containment Vessel Model, Transactions of the 14th International Conference on Structural Mechanics in Reactor Technology (SMiRT 14), Lyon, France, H03-4, pp.97-103
  9. Hessheimer, M. F., Shibata, S., Costello, J. F. (2003) Functional and Structural Failure Mode Overpressurization Tests of 1:4 Scale Prestressed Concrete Containment Vessel Model, Transactions of the 17th International Conference on Structural Mechanics in Reactor Technology (SMiRT 17). Prague, Czech Republic, H02-3
  10. Hognestad, E.(1951) A Study on Combined Bending and Axial Load in Reinforced Concrete Members, Univ, of Illinois Engineering Experiment Station, Bulletin 339(1)
  11. Maekawa, K., Pimanmas, A., Okamura, H. (2003) Nonlinear Mechanics of Reinforced Concrete, Spon Press
  12. Rizkalla, S. H., Simmonds, S. H., MacGregor, J. G.(1984) Prestressed Concrete Containment Model, Journal of Structural Engineering, ASCE, 110(4), pp.730-743 https://doi.org/10.1061/(ASCE)0733-9445(1984)110:4(730)
  13. Sandia National Laboratories(2000) Pretest Round Robin Analysis of a Prestressed Concrete Containment Vessel Model, U. S. Nuclear Regulatory Commission (NRC) and Nuclear Power Engineering Corporation (NUPEC), NUREG/CR 6678
  14. Yonezawa, K., Imoto. K., Watanabe, Y. Akimoto, M.(2002) Ultimate capacity analysis of 1/4 PCCV model subjected to internal pressure, Nuclear Engineering and Design, 212, pp.357-379 https://doi.org/10.1016/S0029-5493(01)00498-8