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Abstract. Estimations of the parameters included in a two-component
system are derived based on masked system life test data, when the
probability of masking depends upon the exact cause of system failure.
Also estimations of reliability for the individual components at a specified
mission time are derived. Maximum likelihood and Bayes methods are
used to derive these estimators. The problem is explained on a series
system consisting of two independent components each of which has a
Pareto distributed lifetime. Further we present numerical studies using
simulation.
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1. INTRODUCTION

One of the interesting problems is to estimate the parameters included in a
multi-component system based on system life test data. Such estimates are ex-
tremely useful because they can be used to deduce estimations of the reliability of
the individual components of the system. These estimations reflect the components’
reliability after their assembly into an operational system. Therefore, these esti-
mates can be used, under some certain conditions, to predict the reliability of a new
configuration of components in a new system.

Generally, one can derive the estimations of reliability components based on
system life-test data. In many reliability situations and life testing, the exact cause
of system failure is often unknown. Sometimes the exact cause of system failure can
be isolated to a subset of the system components, but it remains unknown. Such
type of data is called masked system life-test data. Masking is usually due to limited
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resources for diagnosing the causes of system failures as well as the modular nature
of the system. ‘ C

In such type of data, there are two possible observable quantities for each system
on the life test: (1) the system life time, and (2) the set of components that contains
the component causing the system failure.

Several papers used masked system life test data to estlmate the parameters
of the life time distributions of the individual components in multi-component sys-
tems. Miyakawa (1984) studied the problem of a 2-component series system when
the system’s components have constant failure rates. He derived closed form expres-
sions for the maximum likelihood estimators for the parameters included based on
masked data. Usher and Hodgson (1988) extended Miyakawa's results to a three-
component series system using the same assumption that the failure rates of the
components are constant. Guess, et al.(1991) extended and clarified the derivation
of the likelihood function under the assumption that masking is independent of the
exact failure cause. The exact maximum likelihood estimates using masked sys-
tem data are derived by Lin, et al. (1993) based on-the same assumption that the
system components have constant failure rates. Sarhan (2001) derived’ maximum
likelihood and Bayes estimates of the values of reliability of system’s components
in the case of n component series system when the components have constant fail-
ure rates. Iterative maximum likelihood procedure is used by Usher (1996) in the
case of 2-component series system when the system’s components life times have
Weibull distributions. He illustrated the approach with a simple numerical exam-
ple. The maximum likelihood estimators for the parameters included in the cases of
2-component and 3-component series systems are derived by Sarhan (2003) under
the assumption that the lifetime distributions of the components are Weibull. He
derived closed-form expressions for maximum likelihood estimates in some particular
cases, which generalize the results obtained by Usher and Hodgson (1988). Sarhan
(2004) derived Bayes and maximum likelihood estimators of the unknown parame-
ters in the case of series system when the component lives having linear failure rate
distributions. Sarhan and El-Gohary (2003) derived Bayes and maximum likelihood
estimators for the parameters included in the cases of 2-component serles systems
when the component’s lives having Pareto distributions.

In the previous developed models which used the masked system life-test data,
it is assumed that masking occurs independently of the exact cause of system fail-
ure. This means that, the probability of observing a particular masked set does not
depend on which component causes the system failure. In some cases, such assump-
tion may not hold. For example, consider a system with two components where,
under certain environmental conditions, the failure of either component can result
in a fire and complete destruction of the system. If the system is destroyed, then the
cause of failure can not be identified. Dependence occurs when the probability of
the system’s destruction differs based on which component causes the system failure.
Moreover this probability of destruction given that a particular cause of failure may
depend on time but it seems reasonable to assume that the ratio of probabilities will
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not be a function of time.

In this paper we use the masked system life test data, when the probability of
masking is dependent upon the exact cause of system failure, to derive estimations
of the parameters indexed to the distributions of the individual components in a
series. Also we derive estimations of the reliability measures of the system com-
ponents. Bayes and maximum likelihood procedure will be followed to derive such
estimates. The problem is illustrated for a series system consisting of two indepen-
dent components each of which has a a Pareto distributed lifetime.

The main objective in this paper is to derive the maximum likelihood and Bayes
estimators of the parameters included in the system life tim distribution based on
masked system life test data. It is assumed here that the set of the components that
contains the component causing the system failure is dependent on the exact cause
of failure.

Pareto distribution has many applications in socio-economics, statistics and re-
liability models, see for example (Johnson et al. (1994) and Soliman (1999)). The
Pareto distribution arises as a mixture of exponential distributions and in simulation,
Kumar and Tiwari (1989) and Lindley and Singpurwalla (1986).

Bayes estimation for the Pareto distribution with one unknown parameter is ob-
tained by Arnold and Press (1983). Tiwari et al. (1996) developed a fully Bayes
approach of estimation of reliability measures of the Pareto distribution with two
unknown parameters wherein the range depends on one of the parameters, using
the Gibbs sampler and the rejection/acceptance algorithm. Upadhyay and Shas-
tri (1997) considered the full Bayes analysis of the Pareto distribution when the
observations are doubly censored.

The assumptions and notations on which the model is based on are presented in
Section 2. The likelihood function of the model is given in Section 3. The maximum
likelihood estimators (mles) for the unknown parameters included in the model and
their properties are given also in Section 3. We derived in this section the mles for the
parameters in the case of independent masking data as a special case. Bayes analysis
of the model is discussed in Section 4. Finally, numerical results and conclusions are
given in Section 5.

2. NOTATIONS AND MODEL ASSUMPTIONS

Throughout this paper, the following assumptions are used:
Assumption A
A.1 The system is a series system consists of m independent components.

A.2 The liver of system’s components have Pareto distributions with different pa-
rameters.
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A number of n independent and identical systems are put on the life test.
The test is terminated when all systems failed (there is no either censoring or
replacement).

There are two observable quantities for each system on the life test: (i) the
system lifetime, and (%) the set of components that contains the component
causing the system failure.

The cause of system failure may be either completely unknown or isolated to
a subset of system components or exactly known.

The probability of masking is dependent on the true component causing the
system failure.

In addition, we use the following notation:

n : the number of observations (sample size).
T;; : The random lifetime of component j(j =1,...,m) in system i (i =1,...,n).
T; : the random lifetime of system ¢ (i = 1,...,n).
K, : random index of the component causing the failure of system ¢ (2 = 1,...,n).
S; : the random set of the system components that contains the component causes
the failure system ¢ (i = 1,...,n).
s; : realization of S; (1 =1,...,n).
t; : realization of T; (i = 1,...,n).
fj : the probability density function (pdf) of component j (j =1,...,m) in system
i(i=1,...,n). :
F’j : the reliability function of component j (j = 1,...,m) insystem i ( = 1,...,n).
h; : the failure rate function of component j(j = 1,...,m) in system (i =
1,...,n).
@ : vector of unknown parameters indexed to the distributions of components lives,
T;j.
According to assumptions A.2 and A.3, the random variables T3;, T3, , ..., Tn;

(1 =1,...,m) being identical with the pdf of component j ( = 1,...,m) given by

. 2;+1
fj(x)=%(£> e >0,0>T, (2.1)



Ammar M. Sarhan 121

its reliability function is
— T 6;
Fj(x)=<;) L 6;>0,2>7, (22
and its hazard rate and cumulative hazard functions, respectively, are.
9j ’
hj(z) = o 0;>0,z>71 - (2.3)
and

) |
z) = / hj(u)du = 6; In (g) L 0;>0,3>7. (2.4)
T :

It is assumed here that the parameter 7 is known while the parameters 91, 02, .
O, are unknown

.oy

3. MAXIMUM LIKELIHOOD ESTIMATORS

In this section we derive the likelihood function of the masked system life test
data. Then it will be used to derive the maximum likelihood estimators for the
vector of unknown parameters 8 = (61, 05, ..., O5,).

Given the set of observations (%1,s1), (t2,82), ..., (tm,Sm), the likelihood func-
tion is, Guess et al. (1991),

L(data,8) = H {Z P(S; = si|T; = t;, K; = j) f;(t:) - ﬁ Fl(ti)} . (3.1
=1 \j€s; . £=1,8#7 .
Using the relation between f;(t), h;j(t), H;(t) and Fj(t) given by
fi(t) = hj(t) F;(t) and Fj(t) = exp{—H;(t)}

one can write the likelihood function L(data,8) as

L(data, 6) —exp{ ZZH ti) } ﬁ

i=1j= =1

Y P(Si = si|T; = ti, Ki = j) h‘j(ti)} (3.2)

JESs;
The assumption A.6 means that for any j # £ € s;:
P(Si = S,,|Tl =t;, K; = J) # P(Si = SiiTi =1;, K; = Z) (3.3)

These probabilities are called the masking probabilities, see Guttman et al. (1995).
These masking probabilities are, of course, dependent on S;. If we think of the
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example of two components presented in the Introduction, it seems natural to assume
proportional probabilities for 7, £ € S; and j # £. That is,

P(S; =si|T; =t;, Ki = j) =7 x P(§; = si|T; = t;, K; = {) (3.4)

where 7 > 0 is implicity a function of j, £, but not of ¢;. Note that if = # 1 there is
dependent masking over S;, while if 7 = 1, the special case of independent masking
over S; holds.

Generally, based on the relation (3.3), it is so difficult to study the problem for a
general value of m. So, we shall study the problem when m = 2. In this case we
need the following auxiliary notations. Let n; be the number of observations when
the component 1 causes the failure of the system and the system lifetimes are z,
Z2,..., Tpn,. Let ny be the number of observations. when the component 2 causes
the failure of the system and the system lifetimes are y1, yo,..., yn,. Namely, n;
(7 = 1,2) is the number of observation when the cause of system is known and
si ={j} ( = 1,2). Let n1p be the number of observations when the cause system
failure is unknown (either component 1 or component 2) and the system lifetimes

are zi, 22,.. -, Zn;,. That is, nj2 is the number of observation when s; = {1,2}. Note
that n = ny + Ny + njo and {tl, t2a"') tn} = {xlv T2y.-vy Tnyy Y1y Y25+ -5 Yngy 21,
29y...y Znyy}-

We need also the following assumptions. Let

)\3(ti) = P(Sz = {l, 2}ITZ =t;, K;=1),
>\4(ti) = P(Sz = {1, 2}‘Tz =t;, K; =:2) y

Based on the above assumptions and notations, the likelihood function (3.2) reduces
to the following form

L(data,0) = exp{—zn:(H1(ti)+H2(ti))} ﬁ{Al(xi)hl(xi)}
=1 i=1
« TI Pelu0ha} I] Galeha(e0) + Aa(halz}  (3:5)
i=1 i=1

Substituting (2.3) and (2.4) into (3.5) we get

PR S | ny | niz _ Aa(z;)
L(data, 0) = 01 92 Bl H ti H >\1 (.’Bq,) H )\2(%) H )\3(21) 91 + )\3(z-) 92
i=1 i=1 i=1 =1 ’

(3.6)

— N TI7 -1
where By = 7" [[i=, ¢; .
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Since the conditional probabilities A; (j = 1,2,3,4) do not depend on the parame-
ters, so one can rewrite the likelihood function (3.6) up to a constant as

L(data,§) = 6™ 652 B+02(0, 4+ n6,)™>2 (3.7)

where 7 = i‘l Following the discussion about the relation (3.4), 7 is not a function
of t;, and 7 > ()1 if Ay > (<)A3 and 7 > 0. Without loss of generality we assume
that 0 < 7 < 1.

Theorem 3.1 The maximum likelihood estimators for the parameters 6; and 6 are

b, - .b+2(1—7r_)2n(1—_\/71:; ;4B7r1(1—7r)n1n | (3.9)
where b=ngs +7n; — (1 —7)n.
Proof. Since the log-likelihood function is
£ =n1In6) +ng nb; + (61 + 62) In By + nyz Inf6; + 1r92)
then the likelihood equations become
0 = Z—ll+51—§7r—92+1n31,
0 = Z—zfa%ﬂn& (3.10)

Solving the above system of two equations with respect to 6; and 82 we can get
the mles for #; and 6, as given respectively by (3.8) and (3.9), which completes the
proof.

Corollary 3.1 If the masking is independent with the true cause of system failure
the the mles for 8; and 0 become

A Ny ni2 .
6-:—- J ) =1 . .
T "B, (1+n1+n2 »J=1,2 (3.11)

Proof. Setting 7 — 1 in (3.8) and (3.9), one gets (3.11) which completes the proof.
The above corollary means that the results given in Sarhan and Gohary (2003)
can be derived as special case of the results presented here.

One of the weakness of the mles of ; and 6 given in theorem (3.1) arises when
the available data is completely masked. Since the statements given in the theorem
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will not be defined when n; = ny =0.

Some statistical properties of the mles obtained are given in the following theo-
rem.

Theorem 3.2 The mle for 6, + 65, 6, + 0, satisfies the following properties:
1. it is an asymptotic unbiased estimator,
2. it is a consistent estimator,

3. it is a sufficient statistic.

Proof. Since T;; has Pareto distribution with parameters 6; and 7. Then each
of T; = min(T;1, Ti2), ¢ = 1,2,...,n has also Pareto distribution with parameters
0; + 62 and 7. Therefore, by using the transformation method, the pdf of ¥; = {—1
takes the following form

friy) = (01 +6:) " 0<y< L. (3.12)

Using the transformation method together with (3.12) and the relation Z; = —InY;,
one can show that Z; has exponential distribution with the following pdf

fz,(z) = (61 + 62) exp{—(61 + 62) 2}, z > 0. (3.13)
Therefore, — In B has gamma distribution with parameters n and 6; + 0 and hence
W= —lnlBl has inverted gamma distribution with the following pdf
(61 +6)" 1
fw(w) = T o exp —(61 + 62)/w, w > 0. (3.14)
Then -
. . n n(91 + 02)
0 = — e— = = —>lG, .
Elb, +6,] E[ lnBl] nE[W] = 2L (3.15)
and
nll)nolo E[él + 92] =0,+0 (3.16)

which implies statement 1. Also, using (3.14) we have

A n (61 + 62)?
61 + 6] = Var |~ | = n? =n’
Var[6; + 62] = Var [ InBl] n“Var[W] =n (n—1)2(n—2)
Therefore,
« N 1
. _ 2 9. —
A Vel Gl = G r 0 B T O
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which proves statement 2. Finally, we can write the likelihood function given by
(3.6) as in the following form

ni2
L(data,0) = {Ht_ H)\l T; HAQ y;) H)\g % }
X 9;“ 92 (91 +7T92 nn exp{ 91 + 67) lnBl}.

But InB; = 55_%;, then

ni2
L(data,0) = {Ht_ H)q Z; H)Q Ys) H)\g 2 }

X 9?1 932 (61 + w6)™2 - exp {%2} (3.17)
1 2

which can be written as
L(data,8) = H(ty, ta, ..., t,) - K(61, 0s, 61, 65). - (3.18)

That is, the likelihood function can be written as a product of two functions L;
and L», where L, depends only on the data while the function Ly depends on the
parameters and on the data through the estimators obtained. This completes the
proof of the statement 3 and then the proof of the theorem is completed.

4. BAYES ANALYSIS

As we mentioned in section 2, the mles of the parameters 6; (j = 1,2) are
not available when the observations are completely masked. Therefore, another ap-
proach takes place. As we shall see, the Bayes procedure provides estimators based
on different types of masked data, also it provides a good estimator. In order to
derive the Bayes estimators of the unknown parameters, we need the following set
of additional assumptions:

Assumption B
B.1 The parameters 8; and 6> are independent random variables.
B.2 The prior distribution of the 8; is uniform on the interval A; = [a;, b;] C (0, c0)
(7 = 1,2) with the following pdf :

_1_’ if 8; eA"
g](gj) — { bj—a; 1L Uy J (41)

0, otherwise .
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B.3 The loss incurred when the parameters 6; and 6 are estimated respectively
by 6; and 6 is a quadratic:

l (01, 05, él, éz) =k (014— é1)2 + ko (92 - 92)2 , k1,k2 > 0. (4.2)

To drive the Bayes estimators for the parameters ¢, and 62, we need the following
lemma, which can be proved by using integration by parts.

Lemma 4.1 Let I, 3(n, Q) be define by

Ia;b(n, Q)= /b " Q%du, @ >0,n=1,2,... (4.3)

Then

n n!

Lp(n, Q) = Z —i)! an )it [bnni Q" —a" Qa] (4.4)

1 1

The following corollary can be easily proved by using binomial expansion of
(01 + mly)™12.

Corollary 4.1 The likelihood function (3.6) can be written as °

n12 . . .
L(data,0) = 3 (") 07+ g5+ meI i gt (4.5)
j=0

Theorem 4.1 Based on the groups of assumptions A and B, the joint postenor pdf
of 8 = (60y, 62) is

n
1 12

(Oldata) \I,(O 0) Z (n12)0m+] 9n2+n12—3 nig—j B()1+02 (4.6)

for (0, 62) € A1 x As, where

ni2

n ) . .
(0,0) =) ( ;2)7T"”_] Ioy by (n1 + 5, B1) Loy by (n2 + n12 — 3, B1) . (4.7)
j=0

Proof. The joint posterior pdf of 8 = (0;, 6) is related to the joint prior pdf of 6,
say g(6), and the likelihood function according to the following formula, Martz and
Waller (1982),

9(6) L(data, 6)

g(6ldata) = F(data) ’

(4.8)
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where f(data) = [°7_ g(8) L(data, 6) df. Since 6; and 6, are independent, then the
joint prior pdf of (61,602) becomes g(6) = g1(0;1) g2(f2). Substituting from (3.7) and
(4.1) into (4.8),

ni2 n12 7rn12—j B01+02 9n1+j9n2+n12—j
0)L(data) = 1 1 2 4.9
lo)L{data) Jgo(ﬂ) (b2 — a2) (b1 — 1) (49)
and
12 n12 b1 b2 B91+929n1+J9n2+n12 J
data) = A2 / / d6y df
f(data) J s —a2) (b —ap) 20
n
?;20 ( _;2)7.‘.7),12—] Ial,b1 (nl + j’ Bl) Iaz,bz (n2 + 112 _J’ Bl)
- (b2 — az) (b1 — a1)

= 20, 9) (4.10)

(b2 — az)(b1 — a1)’

Substituting from (4.9) and (4.10) into (4.8) one gets (4.6), which completes the
proof.

The following corollary gives the marginal posterior pdf’s of 6; and 6.

Corollary 4.2 The marginal posterior pdf’s of §, ( £ = 1,2) are

1 ni12 n . . )
91(63ldata) = gros > (7)1 BROP Loy (g +mz = G, By, (411)

for 8, € A;, and for 92 € Ay

n12

g2(6s|data) = OO)E(W) am) BRI L (ny 44, By).  (412)

Proof. Starting with the relation between the marginal posterior pdf of 8; (£ = 1, 2)
and the joint posterior pdf of (8;, 6;) given by

by b1
g1(61]data) = / 9(01,65|data) d6; and go(6;|data) = / 9(01, 62|data) by (4.13)
a2 al ’
Then substituting from (4.6) into (4.13) and making some simple calculations, one
reaches the proof of the Corollary.
Corollary 4.3 The posterior 7—th moment (r = 1,2,...) of §, (£ =1,2) are:

(r) _ Y(rdie, o)

Mo, =T 50,00 (4.14)
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where
n2 ] 2 )
T(réie,r82e) =) ( ;2>7f"12_] I L (nz —(=1)"j +n12di2 + r5ie;B1) (4.15)
3=0 i=1

and d;0 = 1,if £ = j and 0 if £ # j.

Proof. Since the r—th posterior moment of 8, is given by

T bl
pyy = / 0% 9¢(0¢) do, (4.16)
7]

Substituting from (4.11) and (4.12) into (4.16) and making some simple integrations,
we get (4.14) which completes the proof.

Now we are ready to present the Bayes estimators for the unknown parameters
61 and 02 and their associated minimum posterior risks.

Theorem 4.2 Under the groups A and B of assumptions:
1. The Bayes estimators for 8, (¢ = 1,2) are

5 U(01g, 00¢)

6, = 17
2. The minimum posterior risks associated with 8, (£ = 1,2) are
_ U(261,252) {‘I’(51e,52e)}2

Var(6y|data) = 7(0,0) (0.0) , (4.18)

Proof. Since under the squared error loss, the Bayes estimator for 6 is defined
as the posterior expectation of 6, and the associated minimum posterior risk is the
posterior variance, see Martz and Waller (1982). Then for £ = 1,2, we have

- be
0, = / 0¢ g¢(6¢|data) dby = /J,gt) (4.19)
ae

and the minimum posterior risk associated with 8, is

o b b \ 2
Vir(6eldata) = [ 62 ge(Osldata)dbs — [ [ 64 ge(Be|data) db,
a, e a,
£ 3

2 1))2
= ug — () (4:20)

Substituting from (4.14) into (4.19) and (4.20), one reaches the proof of theorem.
Finally, the Bayes éstimators for the values of component’s reliability functions
and their associated minimum posterior risks are given in the following theorem.
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Theorem 4.3 Under the groups A and B of assumptions:

1. The Bayes estimators for Fy(ty) (£ = 1,2) are

< NS
= 4.21
2. The minimum posterior risks associated with 1;7’@ (£=1,2) are
B f) Agu 2
F, = - 4.22
where for r = 1,2
() gt —j 2 ;.
A7 =3 (M) Tl Haus (= (15 + Sz, [1+ ((7/t0)" = 1) 6] Br)
j=0" i=1
(4.23)

Proof. Since the Bayes estimator and its associated minimum posterior risk for
the reliability function Fy(ty) are the posterior expectation and posterior’ variance
of Fy(to), respectively, see Martz and Waller (1982). Then, the Bayes estimator for
Fy(to) (£=1,2) are '

Fotto) = [ * Fy(to) ge(6eldata)dt, (4.24)

and the associated minimum posterior risks are

_ b
Var(Fy|data) =/l

ag

(Fe(to))® 9¢(0e|data)db, — {/ab'l Fe(to)gz(oelda*a)df)e} (4.25)

Substituting from (2.2), (4.11) and (4.12) into (4.24) and (4.25) and making some
simple calculations we get (4.21) and (4.22), which completes the proof.

5. SIMULATION STUDY AND CONCLUSION

We present in this section numerical results based on large simulation studies.
This studies have been made to introduce two examples. In these examples, it is
assumed that the system consists of two independent components. The lifetimes of
components 1 and 2 have Pareto distributions with parameters 6; = 2.8, 8, = 3.5
and 7 = 0.1. For Bayes procedure it is assumed that 6; and 6, having uniform prior
distributions on intervals A; = [0.01, 5.59] and A, = [0.03, 6.97], respectively.

Example 5.1 In this example it is assumed that 30 identical systems were put on
the life test. Table 1 shows the data simulated in this example.
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Table 1. The simulated data for example 1.

i t; Si i t; S; 1 t; S;
10101 {1,2} |11 [0.104 {1,2} [[21]0.112 {2
2 (0112 {2} ||12]0.112 {1,2} || 22|0.186 {2}
30119 {1} || 13]0.106 {1,2} | 23|0.104 {1,2}
410116 {1,2} || 14| 0.113 {1,2} || 24 |0.118 {1,2}
500121 {1,2} || 15 | 0.101 {1,2} | 25 |0.112 {1,2}
6| 0116 {1,2} || 16 [0.108 {2} [ 26 |0.108 {1}
710103 {1,2} || 17 |0.119 {1,2} || 27 |0.119 {1}
810104 {1} ||18]0.133 {1,2} | 28|0.119 {2}
90104 {1,2}|[19]0.104 {1,2} ]/ 29|0.105 {2}
10 | 0102 {1,2} || 20 | 0.103 {1,2} | 30 | 0.119 {1,2}

Using the data given in Table 1, we get that B; = []i; (%) = 2.869 x 1072 ,
n1=4, n2=6andn12=20. '

Using these information and according to the theoretical results derived sections
3 and 4 we calculated the mles and Bayes estimates of 6; (£ = 1,2) and their
associated percentage errors. We derived such estimates when 7 = 0.1, 0.5 and 0.9.
Table 2 gives. the estimates obtained and their associated percentage errors. The
percentage error. associated with the estimate 6 of 0 is given by

_ |0 — exact value of 9|

PE; =
4 exact value of 6

x 100%. (5.1)

Table 2 gives the MLE and Bayes estimates of 81, §2 and their associated per-
centage errors.

Table 2. Estimates and associated percentage errors.

ML Bayes

7 | Parameter | Estimate PE Estimate  PE-
0.1 0, 6.605 135.91 3.857 37.756
0 1.842 47.360 2.125 39.278
0.5 61 5.632 101.14 3.265 16.604
: 0, 2.816 19.544 2.842  .18.792

0.9 0, 3.822 36.499 2.674 4.513
6, 4626  32.169 | 3.473 ~ 0.770

It seems from results presented in Table 2 that:

1. the percentage error associated with Bayes estimate of each parameter is
smaller than that associated with the maximum likelihood estimate of that
parameter for all cases of 7.

2. the percentage error associated with both Bayes and maximum likelihood es-

timates become smaller when the value of 7 approaches to 0.8 (: %% = %21).
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Accordingly, we can say that, for the data given in this example, Bayes procedure
provides a better estimator than the maximum likelihood procedure in the sense of
having smaller percentage error. Also, the cases in which the value of 7 closes to its
exact value give better estimates in the sense of having smaller percentage error.
~ To investigate the influence of the value of 7 on the accuracy of the estimators
given in this paper we present the following example.

Example 5.2 In order study the influence of the value of 7 on the accuracy of the
mle and Bayes estimators, a large simulation study is carried out in this example
according to the following scheme:

1. specify the value of 7.

2. Generate a random sample with size n = 30 of the system life time, (¢1,s1),
.+ (tn, 8n). Then the values of n1, ny and nio are determined.

3. Calculate 51, 6, as given in theorem 3.1 and 51; 6, as given in theorem 4.2.
4. Calculate the squared error for each estimate, (6, — 6)2 andv(eg -0, 1 = '.1, 2.
5. Repeat steps (2-4) 5000 times.
6. Calculate the mean squared error associated with each estimate of 6y (£ = 1, 2)
according to the following relation '
MSE;, = ?20%05 0 1o MSE;, = ?2%0(56:)‘0; 0‘1?)2, - (62

where égi) and égi) are the mle and Bayes estimate of §; using sample 1.
7. Steps 1-6 are done for # = 0.1,0.2,...,1.0.

Table 3 shows the values of MSE’s associated with both mles and Bayes estimates
of the parameters 6, (£ = 1,2) and 6; + 62 against the value of .

Table 3. The MSE associated with 8, and 6, (¢ = 1,2).
MLE Bayes

vy 0, 6 61 + 0y 0, 0 01+ 0
0.1 | 4.87143 3.40430 8.27573 | 2.47509 2.71376 5.18886
0.2 | 4.39812 3.11155 7.50967 | 2.28000 2.47766 4.75766
0.3 | 3.98430 2.74879 6.73309 | 2.07813 2.19742 4.27555
0.4 | 3.40098 2.41231 5.81329 | 1.91266 2.01893 3.93159
0.5 | 2.83013 2.13676 4.96689 | 1.73030 1.93244 3.66274
0.6 | 2.41660 1.78747 4.20406 | 1.57685 1.80747 3.38432
0.7 | 2.09663 1.59869 3.69532 | 1.44700 1.83104 3.27803
0.8 | 1.64313 1.44158 3.08471 | 1.37359 1.81190 3.18549
0.9 | 1.41918 1.39508 2.81426 | 1.29047 1.83406 3.12453
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Based on the results in Table 3, we see that
1. The MSE becomés smaller when the value of 7 approaches to 0.8.

2. The MSE associated with Bayes estimate is smaller than that associated with
mle for all values of .
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