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A Multivariate Mixture of Linear Failure Rate
Distribution in Reliability Models
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Abstract. This article provides a new class of multivariate linear failure
rate distributions where every component is a mixture of linear failure
rate distribution. The new class includes several multivariate and bi-
variate models including Marslall and Olkin type. The approach in this
paper is based on the introducing a linear failure rate distributed la-
tent random variable. The distribution of minimum in a competing risk
model is discussed.
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1. INTRODUCTION

Multivariate lifetime data arise in many different types of industrial applications.
For example, the measurements of the time to failure of machine components. The
linear failure rate distribution is available family of life time distributions to model
such life data interested in types of manufactured items and many other applications.

This paper presents in the reliability theory, since sometimes the failure rate
occurs for more than one reason and the mixture distribution is a mnice tool for
modeling such situation. '

The finite mixture distributions arise in a variety of applications from the length
distribution of fish to the content of DNA in the nuclei of liver cells. The early
development of this area was made by Karl Pearson (1894) since he published his
well-known paper on estimating the five parameters in a mixture of two normal
distributions. The most widely used finite mixture distribution are those involving
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normal components. Another general area where mixtures of distributions are im-
portant is in failure data and the observations are the times to failure of a sample of
items. Often failure can occur for more than one reason and the failure distribution
for each reason can be adequately approximated by simple density function such as
the negative exponential (1952).

The reliability analysis and electronics widely use the univariate linear failure
rate distribution, see for example Ahmad (2001), Pandey et al.(1993), Sarhan (1996),
Zacks (1991) and El-Gohary (2004a, 2004b).

Several basic multivariate parametric families of distributions such as multivari-
ate exponential, gamma and normal distributions, and shock models that give rise
to them are considered by Barlow and Proschan (1981). Earlier, Marshall and Olkin
(1967a)considered a shock model to derive a bivariate exponential distribution. Gen-
eralization of bivariate exponential distribution is proposed by Marshall and Olkin
(1967b).

The model introduced in this paper is of some interest; in reliability theory, for
example, sometimes failure may be occurred for more than one causes and a mixture
distribution is a very nice tool for describing such situation.

The objective of this work is to introduce a new class of multivariate linear
failure rate distributions, shortly (MLFRD). It is considered as a distribution of
the life times of n- dependent components each has a univariate linear failure rate
distribution. Also the mixture of bivariate linear rate distributions (BLFRD) is
studied. :

The paper is organized as follows. Section two presents the multivariate mixture
of linear failure rate distributions with a latent random variable also linear failure
rate. Section three introduces the mixture of bivariate linear failure rare distrib-
utions. Section four presents the joint moment generating function of mixture of
bivariate linear failure rate distributions. Section five presents competing risk fail-
ure rate models. Finally, some properties of independence and bivariate dependence
of the distribution are presented.

2. LINEAR FAILURE RATE MODEL

This section deals with the mixture of linear failure rate distributions and we
derive a multivariate distribution where dependence among the components is char-
acterized by a latent linear failure rate random variable independently distributed of
the individual component. Also we develop a bivariate linear failure rate distribution
with latent linear failure rate random variable as a special case.

2.1 The multivariate mixture model

We consider an n-component system where the lifetime of ¢ — th component,
namely X; has a mixture of linear failure rate distributions (LFRD), i =1,2,...,n.
That is
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X; ~ Y 14 Xij, Xij ~ LFRD(5,Bi), 5 = 1,2,.. ., k (2.1)

where the nutation LFRD(cj,0;;) means a random variable, say X;;, having a
linear failure rate distribution with the parameters o;;, 5;; and its density function
is given as

Fx; () = (ouj + Bijz) Fx,; (), © > 0, a5 > 0, Bij > 0, (2.2)

where FX,-j (z) is the survival function of the random variable X;; which is given by
FXij (IL') = e_(aijz+%ﬂij$2)a z 2 0, Uij > Oa ﬂz_j > 07 (23)

and d; = (a1, - .., ak) is the vector of mixing probabilities corresponding to i —th
component. That is a;; > 0 for all 4,j and Zfﬂ a;; = 1.

Also we introduce a linear failure rate random variable, Z, with parameters «
and B which is independent from Xj;; for all ¢,j. The random variable Z will be
used a latent variable to introduce dependence among X/s. The density function of
the latent variable Z is given by

fZ(Z)=(a+,3?)FZ(Z),ZZ0,0!>O,ﬁ>0- ) (24)

where the survival function Fz(z) of Z is given by
Fy(z) = e @ +3%) 3 >0, 0>0, 8> 0. (2.5)

Using the assumption of our model the latent variable Z is also independent of
X;forall (i=1,2,...,n).

Now, we define the vector of multivariate distribution § = (51, 52,...,8,) where
Si = min(Xj;, Z) for all (¢ = 1,2,...,n) and obviously they are dependent as they
commonly share the influence of the latent random variable Z. In what follows we
introduce the joint of multivariate survival function of S1, Ss,...,S,.

Corollary 2.1 The joint survival function of Sy, Ss,...,S, is given by

n k
F(s1,52,...,8n) = Fz(s0) [] D ai; Fx,; (si), (2.6)
i=1j5=1
where
FXij (Sz) = e—(aijsi+%ﬂijs?) (2.7)
and so = max(s1, $2,...,5,) > 0.

Proof. The survival function of S1,.9,,...,S, is defined by

F(s1y...,8n) = P(S1 > s1,...,5, > sp)
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Then using the definitions of S; we get

F(sl,...,sn) =P(X1 > 81)P(X2 > SQ)P(Xn > Sn)P(Z > So)

— e—(aso+Bs3) ﬁ Zk: aije—(aijsz'-i-%ﬂijsf) (2.8)
i=1j=1
One can write the above relation as given by (2.6), which completes the proof.
Note that the presence of sy makes it is very difficult to calculate the multivari-
ate density function of §1,55,...,5, as we have to take mixed derivatives over all
possible partitions of the sample space.

3. MIXTURE OF BIVARIATE LINEAR FAILURE RATE MODEL

In this section we will derived the mixture of bivariate linear failure rate distri-
butions with latent variable also is a linear failure rate distribution. The bivariate
linear failure rate distribution is discussed. Also, the mixture of bivariate exponen-
tial distributions may be derived as a special case from the mixture of bivariate
linear rate.

3.1 Mixture of bivariate linear rate distributions

In this subsection we consider the case n = k = 2 for simplicity, that is under
the plan of the bivariate two component mixture linear failure rate distributions.
Then, from (2.6) it follows that the joint survival function of S; and S, will take the
following form

F(s1,82) = P(81 > 51,52 > s2) = P(X1 > 1) P(X2 > 52)P(Z > 50)
= FZ(SO {pllFXu (Sl)FX'A ('52) +p12FX11 (SI)FX22 (32) (3-1)
+p21 Fx 15 (51) Fxy (52) + p22Fx 5 (51) Fxpy (52) }

where X; and X2 have mixture of linear failure rate distributions that denoted by

Xy ~ [a1xLFRD(011, 511) + (1 ~ a1) LFRD(a12, fr2)],

3.2
X1 ~ [a2LFRD(a1, fn) + (1 ~ a2) LFRD 22, ), (3.2)

where LFRD denotes the linear failure rate distribution, and
pij = a2 i (1 — a1)" (1 — @)™, V4,5 € {1,2}. (3.3)

Form the relation (3.1) we can conclude that

1. For 4,5 € {1,2}, p;; > 0 and p11 + p12 + p21 +p22 = 1.

2. Every term of the right hand of F(s},s2) which given by equation (3.1) has a
survival function of a bivariate linear failure rate distributions.
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This leads to the result that, the survival function given in (3.1) considers as the
joint survival function of a mixture of four bivariate linear failure rate distributions.

Now the following Theorem gives the joint probability density function of S; and
Ss.

Theorem 3.1 The joint pdf of S;, Sy say f(s1,s2) is given by

fi(s1,82) 81> 52
f(s1,82) = fals1,82) s1<s2 (3.4)
fo(s0,80) s1=82=15¢

where
fils1,82) = Fz(s1) {pule + a11 + (B + u)si)(az1 + Bars2) Fxyy (s1) Fx,y (2)
+p1zla + on1 + (B + Bu)si)(on + Bazs2) Fxy, (51) Fx,, (52)
+p21fa + a1z + (B + Bi2)s1](@21 + Ba152) Fxy, (51) Fxy (52)
+poele + a1z + (B + Br2)s1) (o2 + Ba232) Fixy, (81) Fixyy (82) }

fa(s1,82) = Fz(s2) {pr1{a+ ansi)le + ag1 + (8 + Ba1)s2) Fxy, (1) Fx,, (52)
+p12(011 + Br1s1)[a + aze + (B2 + B)s2]Fixy, (1) Fxy, (52)
+pa1(oa2 + Bras1)|a + a1 + (B + B21)s2] Fx,, (1) Fxy, (52)
+pzz(enz + Brasi){a+ azz + (B + Baz)s2)Fx1y(51) Fxy (2)}
fo(s0,50) = (a + Bso) Fz(s0) {p11Fxy; (30) s, (80) + P12Fx,, (50) Fxs, (50)
+pa1Fx; (50) Fxyy (80) + D22 Fx15 (50) Fxys (50)}
(3.5)
Proof. The forms of fi(s1,s2) and fa(s1,s2) can be obtained by differentiating the
joint survival function F(s;, s2) with respect to s; and so. But the function fy (s, so)

can not be derived in a similar method. In fact to derive the function fy(sg, s¢) we
will use the following identity

o0 81 [o o] 82 o0
/0 /0 f1(81,32)d32d81+/0 /0 f2(31,82)481d82+/0 fo(so,s0)dso =1 (3.6)

After obtaining the forms of fi(s1,s2) and fa(s1,s2) as given in (3.5), we will sub-
stitute into (3.6) and making some lengthy integral calculations we get

/Ooo fo(s0, 80)dso = p11 [)w {(a+ Bso) Fx,, (s0) Fx, (So)Fz(SQ)} dsg

+p12 /000 {(a + Bso)Fx,, (50)Fx,,(50)Fz(s0)} dso
+pa1 /Ooo {(ca + Bso) Fx,,(50)Fxy (50)Fz(s0)} dso

+p22 /000 {(a + Bso) Fx5(50) Fxyy (80) Fz(s0) } dso (3.7)
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Hence we can easily obtained the function fy(so, so) as given by last equation of the
system (3.5).
The following Corollary gives the marginal pdf’s of Sy and S3.

Corollary 3.1 The marginal pdf’s of S; and Sz are given by

fsi(s1) = Fz(s1) {arla + a1 + (B + Bu1)s1)Fxy, (s1)

+(1 —a1)[a+ ar2 + (B + Br2)s1]Fxy, (1)}, 81 >0 (38)

d
an fsi(s2) = Fz(s1) {asler + az1 + (B + B21)s2] Fxy, (51)
+(1 — a2)[a + age + (B + B22)s2)Fx,,(51)}, 82> 0

The following Theorem provides an approach of obtaining the joint bivariate density
when the component of the random variables can be equal with positive probability.

(3.9)

Theorem 3.2 If the bivariate survival function F(z,y) of X and Y takes the fol-
lowing form:

Fxy(z,y) = Fz(2)Fx (2)Fy (y), wherez = max(z,v) (3.10)
and
Fx(z) = e@2+3P15") | R (y) = ~(0vt09")  Fy(z) = e~ (@2+62%) (3.11)

then the joint density function of X and Y is given by

filz,y) >y
fxy(@,y) =4 falz,y) z<y (3.12)
folz,z) ===y

where

filz,y) = (a2 + Bey)la+ 1 + (B
f2(z,y) = (1 + iz)a + 02 + (B
folz,z) = (a + Bz)Fx (z)Fy (z)Fz

+ b
J(rﬁg )y] (%) (3.13)

Proof. The proof of this theorem is based on obtaining the forms of f;(z,y) and
fo(z,y) by differentiating the joint survival Fx y(z,y) that given by (3.10) with
respect to z and y twice times. While the function fo(z,z) will be obtained from
the identity (3.6). Now, using the forms of f;(z,y) and f2(z,y) we have

/Ooo /Ox filz,y)dydz =1 — /Ooo[a +a+(B+ ﬁl)z]Fx(x)Fy(m)F‘z(w)dx, (3.14)
and

[ [} aawydaty =1 = [Tio+ a0+ 0+ BP0 Py () Prlu)dy.  (3.19)
0 0 0
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Substituting from (3.14) and (3.15) into (3.6) we get

/Ooo /Ow fi(z,y)dydz + /Ooo /Oy folz,y)dzdy =1 - /0°°(a+ﬁx)px(x)jy(x)pz(m)dz

o : , , (3.16)
Comparing with the identity (3.6) with equation (3.16) we get :
x| o0 _ — —
/ folz, z)ds = / (a + Ba)Fx () Py (2) Fy (z)dz. (3.17)
0 0
Thus, the function fo(z,z) is given by
fo(z,z) = (a + Bz)Fx (2)Fy (z)Fy(z)dz, £>0. (3.18)
Corollary 3.2 The marginal pdf of X and Y are given by
fx(@) =la+ a1+ (B+B1)z]Fz(z)Fr(z), 2> 0. (3.19)
and
fr(y) =la+or+ (B+B)ylFz(y)Fy (y), y > 0. (3.20)

Proof. The proof of this corollary can be done by integrating the joint pdf of (X,Y)
with respect to z and y, respectively.

From (3.19) and (3.20) we find the marginal distributions of X and Y are also
linear failure rate distributions.

Now, we consider the bivariate mixture of exponential distributions as a spec1a1
case of the bivariate linear failure rate model.

3.2 Mixture of bivariate exponential distributions

In this subsection we will derived the bivariate mixture of exponential distrib-
utions as a special case of the mixture of bivariate linear failure rate model. The
model of the mixture of bivariate exponential distribution can be obtained from
(3.5)- (3.20) by simply putting 8;; = 0 and 8 = 0 for all 4, 5. Thus, the density
function of S; and S; is given by

fi(s1,82) = {pr1oa1(@ + an) Fxy, (s1)Fx;,, (s2) + pracaa(a + on1) Fx,, (51) Fxy, (s2)+
pa10g1(a + 012) Fxy, (s1) Fx,, (s2) + p2oasz(a + a12) Fx,, (81)Fxy, (82)} Fz(s1)

fa(s1,82) = {pr1cq1(a + a21) FXu( 1) Fx,, (s2) + p12011(a + ags) qu (SI)FXn (s2)+
paiarz(a + a91) Fx, (51)Fx,, (s2) + prociz(a + aa2) Fx,, (1) Fx,, (s2)} Fz(s2)

fo(s0,50) = a {P11Fx;, (50) Fx,1 (50) + PraFxy, (51) Fxpy (52)+
p21FX12 (sl)Fle (32) + p22FX12 (sl)FXn 52 } FZ 30)
(3.21)
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where the survival functions Fj;(s;) and Fz(z) are given by
inj (8;) = e™ %% Fy(z) =e %, i,j =1,2.
The marginal distributions of S; and S, for the exponential distribution take the
for '
fsi(s1) = {a1(@+ an) Fx,, (s1)(1 — a1)(a + a12) Fx,,(s1)} Fz(s1), 51> 0

fs,(s2) = {az(a + a21) Fx,, (s2)(1 — az)(a + aa2) Fxy,(s1)} Fz(s2), s2 > 0. )
(3.22

Next, we will obtained the moments generating function of the mixture of bi-
variate linear failure rate distributions.

4. THE MOMENT GENERATING FUNCTIONS AND

EXPECTATIONS

In this section we will obtained the joint moment generating function of S; and
S, and univariate moment generating functions of S; and Ss. Also we will obtained
the expectations of S;, Sf, (i =1,2) and $1.9:.

Theorem 4.1 The joint moment generating function of Sy, Ss, say Mg, s,(t1,t2) is
given by

‘ ‘ (a+ﬂ11 tl)
t, 1)) =1 ¢ a - ® _ﬁﬂL)] PIGETIE)) —l-a1
Mot 12 v { V 2(8+811) [1 <\/2(ﬂ+ﬁ11) € ot 2(B+PB12) [1

<M>]é%}+ﬁt2{_az_[l—¢(_ﬂ%¥)]x

V2(8+812) VvV 2(B+B21) V' 2(B+PB21)
.
e(aﬁ;(;il_ﬁzil))- —loe |1 —otee e(a'j(z?fﬁz;l) to/TT X
+ + t1 2\/_
2(B8+822) vV 2(B+B22)
——aL—-[GQI(H)(tl t2) + (1 — a2)I£1 )(tl t2)]e(a;%;'li-lﬁli]5) + ﬁ_x
v 2(8+811) 1 ’ ’ V2(B+B12)
(°‘+°‘12 tl)

021V (t1,12) + (1 — ap) I )(tl;tg Je" TEER) 4 W[a@ (t1,t2)
(a+¢121—t1)

12 ST — -
+(1 - al)lz( )(tl,tz)] 62 2(8+821) 4 —2—2(é+(;322) [(11[2 (t1,t2) + (1 —a1)x
(a+a -1
(22 (tl,tz)] 2(ﬂ2-;-26221)) ,

(4.1)
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where

(11) o0 aj; ta—1t (B + Bu1) —[(dzl—tz)u+lﬂ21"2]
I (1) = / 1-® + ulp e 2P du,
1 (hte) 0 { [\/2(ﬂ + B11) 2 ] _

(4.2)

(11) _ /°° a9 +a —1y (B + B21) ~[(a11~t1 )ut+1B11u?]
L (ty,t) = 1-9 + ul o e 2 du,
2 (ft) 0 { [\/2(5'1'521) 2 ]

(4.3)
and

&(z) = \% /0 "ot gy

The integrals Iflz),lélz),I{m),Iém) and 11(22),I§22) can be obtained from (4.2)(4.3),
by replacing o11, @21, f11, 821 With o1, a2, B11, Bi2; oa1, @2, Bi1, Beejand a1z, a1,

B2, Pa1-

Proof. The moment generating Mg, s,(s1, s2) is given as

o0 81
M51,52 (81,32) = E[e(tlsl+t2»52)] = / / e(tlsl+t252)f1(sl,82)d32d51
0 0

o0 52 o0
+/ / eltisrttasa) £ (51 s0)dsydss +/ eltrtt2)s0l 055, 50)dso. (4.4)
o Jo 0 _

Then substituting (3.5) into (4.4) and after lengthy algebraic manipulation we can
derive the moment Mg, s,(t1,t2) as by (4.1) that completes the proof.

Corollary 4.1. The moment generating functions of S, and S, are given by:

2
aj]ta—-it
. T o11ta~1) :
Ms, () = a1 {1 + tl\/Tz ﬁ+ﬂu)e(\/2(ﬁ+ﬂn)) [1 -@ (\/2([3+511))] }
a19+a~—t 2 . .
3 \—/g _ pta—t
+(1~a1) {1 4/ sEre ) [1 e ( az(ﬁi/sm))]} |
, (4.5)

az1+8g—1 2 . ‘
MSz (t2) = a9 '{1 + t21 /257@( V2821 ) [1 —® (a2]+09—t2)]

V2621
" (a22+9Q—-t2)2 00—t
+(1 — ag) 1+t21/%e V2822 _[1—@(—2\/27'—52_2—2)] _

Proof. This Corollary can be proved by using the joint moment generating function
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(4.1) or by using the marginal pdf’s (3.8) and (3.9) of S; and S, respectively.

Corollary 4.2 The expectations of S;, SZ, (i = 1,2) and S15; are given by :

= s ut a11+a)?
ElS)) = a1 \/55iD {1 -® ( ,-_—-;‘(ﬂ+§11)) } exp {%——l” o }

124 a1ata)?
+(1—a1) \/ Ziﬂ-;’-rﬂlzj {1 - (\/aﬂ-i-gm ) } exp { 2 [lii-ﬁm)} ’

(4.6)
_ _ _ogta az +a)?
BlS:) = o2 [ {1 <I>( ;m;;; ) } e { G55}
(1=ay) forErs _ agpta {ga22+a! }
2 2(8+822) v 2(8+822) 2(8+622) J °
(4.7)
21 2 V27 (a1140@) _ 1ta a1 +a)?
E[Sl] - {ﬂ+ﬁu + ﬂ+[311\/1/13+511 [1 ® ;(ﬂ'i'ﬁn))] Pz ;31—'-/311 }}
— 2 V2 (e13+a) — @[ —cuzte (e12t@)?
+(1-a1) Bhn T ﬂ+ﬁ12\/1;+,512 2(8+B12) ] P 2(ﬂ+ﬂ12)}
(4.8)

_ 2 V27 (a22+0)
+(1 a2) B+B22 + B+Ba2+/B+B22 \/2(54—[32 )

%

2 _ 2 Vor(eaite) | _ 0z ta (anta)®
E[Sz] - @ {ﬂ+521 + ﬂ+521\/2/;+ﬂ21 [1 e ;(B+gzl))] eXP{ (El-'-ﬂ 1) }}
)

and

(ag1+a)?
E[Slsg] = /H w0, 0) +p1al{'?(0,0) e W 4 gl [p22118*Y(0,0)
a19+a) o +¢:z)2
+p22{*(0,0)]e S 4 — [puI(n)(O 0) + P2V (0, O)W B+

( a +cz)2

— (agata)”
+.3+1ﬂ22 [plz[él )(070) +p2212 )(0 0)] 2(B+P22) }

(4.10)

Proof. This Corollary can be proved by using the joint moment function (4.1).

Finally, the mixture of bivariate linear failure rate distributions with exponential
latent random variable and its properties can be obtained as a special case from the
derived results by setting 5 = 0. .

The moment generating function of bivariate exponential can be obtained from
(4.1) by setting B;; = 0 for all 4,5 and 8 =0. That is

ajjla+a ag1(la+ «
Ms, 32(31732) — b11 [ 11( 21) 21( 11) +a]
’ a+ay;+ayq —t1—blat+ay —1 a+a;—1t
N P12 [0611(04-0122) a(a+ ar) +a]
a+ oy o —t —la+4+ayp — 12 a+ o — 11
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P21 [alz(a + a21) | ag(a+ o12) + a]
atagtan—t—fhlat+ag—1i a+ a2 —1

P22 [0112(01 +az)  ag(a+ o) + a]
a4+ o+ o0 —t; —tola+ agg —1s a+ o —t

(4.11)
Also, we can obtained the moment generating functions of $; and S from (4.5)
by setting B;; = 0 for all 4,5 and 8 = 0.

5. COMPETING RISK LINEAR FAILURE RATE MODEL

In this section we propose a linear failure rate competing risk models. These
models arise in situation in which fail of the components is due to several different
causes. In such situations every system failure is caused by only of the competing
risks. In the present work we consider each competing risk has a mixture of linear
failure rate and also the latent variable has a linear failure rate distribution.

Now we develop the distribution of the minimum. Assume that the random vari-

able X; be a mixture of X;1, X;9,..., X;t each of them has a linear failure rare dis-
tribution with parameters (o4, 8:5) and the mixing probability are a;1,a;2,...,a,
that is ZJ_ a;;j = 1¥i = 1,2,...,n. Now, consider one latent random varlable Z

with linear failure rate dlstnbution with parameters a, 3 which is independent of
X1,Xo9,...,X,. Also we define the lifetime of the system T as

T = min(X,, Xo,...,Xn, Z) (5.1)
Thus
P(T > t) = P(min(X3, X2,...,Xn,Z) > t)

= P(X; >t)P(X2 >t)...P(X, > t)P(Z) > t)
— e—(at+ 18t?) Hn Z]-—la e (a,]t+ Bit?) (5.2)

— I-I -t Z] 1 a”e_[( +ai; )t+ (é+ﬂ1]t N — H?:l P(q’; > t)
where T; is mixture of linear failure rate distributions with parameters (& + a;, ‘g +

Bi;) and mixing probability a;1,a2,. .., G-
Thus, we find that

Fr(t) =[] Fr.(t). (5.3)

Therefore, the probability density function of T is given by

_4a i T>t)
fi(t) = =P(T > ) = T>tZP(T>t)dtP(T’>t ; T,>t) 7, (t)

(5.4)
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and hazard rate function of is given by

hr(®) = 29— S hre (55)
T = = == n . .
. FT(t) i=1 '
The average of the mean time to failure of the system is defined
E(T) = / tfr(t)dt = / = Fr(t)dt = / Fr(t) (5.6)
0
oo o0 n .
=/ [] e 79t =/ e~ 2iz A0 gt (5.7)
0 =1 0

where Hr,(t) is the integrated 'hazard rate function of T}, (i=1,...,n).

5.1 Mixture failure linear rate model

In this subsection we will develop the distribution of the minimum and the
corresponding hazard function for the mixture of linear failure rate distributions.
Now we define S = min(S1,...,Sy), then the survival function of § is given by

F(s) = P(S > s) = P{min(S1,...,S5,) > s} = P{S1 > 5,52 > s,...,5 > 55}

n n k
=Pz > ) [[ P > 5) = [[ 3 aye—eus+itust+ 2+ £ Z [[ P(T; > 5)
i=1 i=1j=1 =1

= ﬁFT (s)
=1

where fr,(t) = E?:l aijlog; + 5+ ( + Bij)tle(iitts ﬂ”t2+ 512 32), t > 0. Hence,
the density function of S takes the form

T & fTi(s)
= F(t) ,; (o)’ (5.8)

Thus the hazard function corresponding to S reduces to

hs(s) = Xn: hr;(s)
i=1

where

J 1 o _&
Yh aijlang + 2 + (8 + Bij)slem (st ot st i)
Th_ agjem st 3Pty 2s+£s2)

hr,(s) = (5.9)



A. El-Gohary 113

is the hazard of T3, i = 1,...,n.

In what follows we will obtained some of special cases, the first special case
occurs when 8;; = 0 for all 4, j and k = 2 and n = 2. This case represents a mixture
of bivariate exponential distributions with linear failure rate latent random variable.
Then the density function of T3 and T3 are given by

fru(t) = ar(om + § + §t)e len 501 4 (1 g)(anp + § + Ge)el(@rerales 7]
f1(t) = aa(om + § + §t)e(En+ 8 4 (1 — gy)(any + § + Bt)el(emrtelt+ 2t
(5.10)

and the survival function of T is given by

F'T(t) = plle“[(al1+mz+a)t+§t2] +p12e—[(a11+022+a)t+§t2]+

p21e—[(a12+a21+a)t+§t2] _+_p226_[(012+022+a)t+§t2]. (5.11)

The second special case when $;; = 0 for all 4, j and 8 = 0. This case represents
a mixture of bivariate exponential distributions with exponential latent random
variable. In this case when k& = 2 and n = 2 the density functions of T}, T» and the
survival function of 7' can be obtained from (5.10) and (5.11) by putting 8 = 0.

The Marshal-Olkin model can be obtained as a special case from the last model
by putting a; = a; = 1, that is p;; = 1 and p;; = 0 for all 4,5 # 1 and ay; =
a1, a1 = ag the joint pdf of S; and S, is given by

as(a + a)e~(@sitazsatasy) g 5 gy
f(s1,82) = o1(a+ az)e—(alsl+a252+a‘92), s1 < 82 (5.12)
ae‘(0‘1+a2+°‘)s°, $1 = 89 = 8.

It follows that the joint moment generating function of S; and S is given by

1 al(a+a2) 02((14‘01)
M = —ta)”
51,52(81732) a+a1+a2_t1_t2 [a+a+a1—t] a+a2_t2

(5.13)

It is very easy to calculate the covariance and correlation of S; and Ss.
Now, under the conditions of Lee (1979), we have k = 1 and n = 2. Thus the
joint survival and density functions are given by '

2
Fs,.5,(s1,82) = Fz(s0) [[ Fs:(s0), (5.14)
i=1
where
Fs.(si) = e_("“'si'*%ﬂ"s?), and Fyz(sg) = e"(‘”°+%sg), i=1,2 (5.15)
and

(a2 + B2s2)[ex + a1 + (B + B1)s1]Fs, (1) Fs, (s2) Fz(s1), 81> 82> 0
fs1,5:(s1,82) = ¢ (o1 + Bis1){a + o + (B + B2)sa]Fs, (s1) Fs, (s2) Fz(s2), s2> 81 >0
(a + Bs0)Fs,(s0)Fs,(s0)Fz(s0), s1=s2=250>0
(5.16)
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Thus, the marginal pdf of the minimum is

fs(s) = pula+ a1y + ao1 + (B + Br1 + oy )sle~(eronran)st §(6+5ur+hn)s’)
+piafa + a1 + azs + (B + Bur + Brp)sle”@orrran)st 3 (FHA0+022)s%)
+parlo + a1z + g1 + (B + Puz + Pan)sle”(Faztan)st 3 (B+biatfa)s’)
+paofo + 01z + az + (B + Puz + Paz)sle (et mztan)st 3 (B+hua+6n)s?],

s>0
(5.17)
Now, the moment generating function of the minimum is
at+ai]togy—t
st = CTEEND [) _ o (arentan -t
= oo e fs(s)ds =1+ /mt {pu { Gt h [1 o (7-—1-1——2L2 B+/3u+ﬁzx))]}

a+a”+a22—t

n _e2(B+P11+B22) [ ( atoq1+a2 )]

P12 2(ﬂ+,311+ﬂ22 2(B+P11+P22)

a+cx]2+a2]—t
_e2(B+B1a+Ba1) [ )]

a+ta
P2 V2( ﬁ+ﬂ12+ﬂ21) 1- @(2(5+ﬂ12+,321)
+p22{ e:i%iﬁl-;iﬂz;;

2(ﬂ+ﬁ12+522) [1 Q(i%l%)]

\ P e S

}

Using the form (5.18) one can derive the expectation of the minimum distribution
and the expected residual life of the system.

(5.18)

6. CONCLUSION

The class of models developed in this paper has many different applications in
industrial and medical field. In this paper we present a new class of multivariate
linear failure rate distributions. The obtained class includes multivariate and bi-
variate models including Marslall and Olkin type. The approach in this paper is
based on the introducing a linear failure rate distributed latent random variable.
The distribution of minimum in a competing risk reliability model is discussed.
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