International Journal of Kais. Special Edition December 2005

Highspeed Packet Processing for DiffServ-over-MPLS TE on Network Processor

Dijakhongir Siradjev®, Youngsu Chae™ Young-Tak Kim®
Yeungnam University, Korea

Abstract

The paper proposes an implementation architecture of
DiffServ-over-MPLS traffic engineering (TE) on Intel
IXP2400 network processor using Intel IXA SDK 4.0
Framework. Program architecture and functions are
described. Also fast and scalable range-match classification
scheme is proposed for DiffServ-over-MPLS TE that has
been integrated with functional blocks from Intel
Microblocks library. Performance test shows that
application can process packets at approximate data rate of
3.5 Gbps. The proposed implementation architecture of
DiffServ-over-MPLS TE on Network processor can provide
guaranteed QoS on high-speed next generation Internet,
while being flexible and easily modifiable.

Keywords: QoS, traffic engineering, network processor,
fast packet processing, classification, DiffServ-over-MPLS

1. Introduction

The major goal of Internet traffic engineering is to
provide efficient and reliable network operations and
guaranteed Quality of Service (QoS) for end users, while
keeping network resource utilization at high level. Support
of Differentiated Services [1] in MPLS [2] that was
standardized by IETF can provide QoS guaranteed service,
while keeping network resource utilization at high level.

Unfortunately using DiffServ-over-MPLS [3] traffic
engineering severely increases the processing complexity
performed by the network nodes, especially edge routers.
Also, taking into consideration of continuous exponential
grow of network speeds, it is definite that improving the
algorithms of packet processing together with
parallelization of processing is one of the most important
issues that should be studied.

For high-speed packet processing Network Processors
used [4]. There is a number of different

“Dept. of. Information and Communication Engineering
Graduate school, Yeungnam University

214-1, Dae-Dong, Kyungsan-Si, Kyungbook, 712-749, Korea
m0446086@chunma.yu.ac.kr

"Dept. of. Information and Communication Engineering
Graduate school, Yeungnam University

214-1, Dae-Dong, Kyungsan-Si, Kyungbook, 712-749, Korea
yschae@yu.ac.kr

Dept. of. Information and Communication Engineering
Graduate school, Yeungnam University

214-1, Dae-Dong, Kyungsan-Si, Kyungbook, 712-749, Korea
ytkim@yu.ac.kr

This research was supported by the ITRC (Information Technology
Research Center) program of the Ministry of Information and
Communication , Korea

are

-97.

implementations of DiffServ and MPLS on network
processor, and moreover Intel supplies sample example
applications [4], but there are no exact proposals of
DiffServ-over-MPLS capable router on network processor.
Other approaches, like implementations of DiffServ-over-
MPLS routers do not have enough flexibility to be changed
easily, when it is necessary, and implementations on
General Purpose Processors do not have enough processing
speed.

This paper concentrates on the architecture,
implementation issues and techniques of DiffServ-over-
MPLS router, and especially, range-match classifier
microblock, on Intel IXP 2400 processor. We explain the
design of processing pipeline and will go in depths of
classifier architecture.

The rest of this paper is organized as follows. Section 2
describes the related works on Intel IXP 2400, Intel IXA
SDK Framework, and DiffServ-over-MPLS traffic
engineering. In Section 3, we describe the proposed
scheme, implementation technique and issues for DiffServ-
over-MPLS router, and its functional blocks. We will cover
range-match classification implementation plan in details,
as one of the main focuses of this paper. Section 4 analyzes
the overall consideration factors of the proposed
implementation scheme, and finally section 5 concludes the

paper.
2. Related Works
2.1 Network Processors

Currently, most network interfaces of high-speed
IP/MPLS routers are at 1 Gbps/2.4 Gbps (OC-48) ~ 10
Gbps (OC-192) using Gigabit Ethernet or SONET
transmission links. In future, by using WDM and DWDM,
16 ~ 64 lambda channels (which can support 10 Gbps per
lambda channel) are expected to be provided in an optical
fiber, where IP/MPLS routers are going to support 8 ~ 64
optical links/ports. In order to support very high-speed
packet processing and switching in total capacity of more
than 1 Tbps, network processors with multiple
microengines have been developed.

The IXP2400 network processor contains 2 kinds of
processors: Intel XScale core and 8 microengines. Intel
XScale core is a general-purpose, 32-bit RISC processor
compatible to ARM Version 5 Architecture [4]. The Intel
XScale core initializes and manages the chip, and can be
used for higher layer network processing tasks.
Microengines (MEs) areé 32-bit programmable engines
specialized for network processing; these MEs handle the
main data plane processing per packet. There are eight

International Journal of Kais. Special Edition December 2005

hardware threads per ME with no overhead for context
switching. Also each microengine has local memory that
can store up to 640 32-bit longwords, 256 general-purpose
registers, 512 transfer registers, 128 next-neighbor registers
that has hardware support for rings, and additional features,
like content-addressable memory and multiplier.

The IXP2400 network processor provides a variety of
different tools for implementing packet processing oriented
applications, but has certain hardware limits, that written
application can never exceed. That is why efficient
application design is the key point of network processing
applications.

2.2 Intel Internet Exchange Architecture Software
Development Kit

The IXA Portability Framework [5] is a network
application framework and infrastructure for writing
modular and portable code, which can save time by
providing robust infrastructure software and APIs, re-
configurable building blocks, and an ideal structure for
third-party plug-in application modules. Usual networking
application usually contains data, control and management
planes. The data plane processes and forwards packets at
high speed. It is typically the most performance-sensitive
since all packets processed by the device must pass through
the data plane. Intel IXA SDK architecture splits the data
plane into 2 parts: (i) the fast path which handle most of the
packets, and (ii) the slow path which handles a few packets
that cannot be handled on the fast path because of the
complexity of the processing involved. These packets are
called exception packets. Examples include forwarding IP
packets with options in the header, handling fragmented
packets, etc.

Every application built with IXA SDK Framework
usually contains at least four logical parts: Microblocks,
Core Components, System Application, and Dispatch
Loops. Data plane processing on the Microengines can be
pipelined by dividing the processing into tasks called
Microblocks. The intent is to allow microblocks to be
written so that each microblock is independent of the
others. This improves reusability and allows developers to
combine microblocks in different ways to create a
meaningful application. Several Microblocks can be
combined into a Microblock group using dispatch loop. A
Microblock group runs on each thread of one or more
Microengines.

The microblocks are usually one of two types: (i)
Packet processing microblocks which perform high-level
protocol-specific functions on a packet, for example IPv4
forwarding, MPLS, and Classification, and (ii) Driver
microblocks which are hardware- or media-specific code
blocks that may be implemented in hardware in future
revisions of the IXP processor, i.e. Receive/Transmit blocks

that interact closely with the MSF interface on the IXP2xxx.

2.3 DiffServ-over-MPLS

Differentiated Services [1] and Multiprotocol label
switching (MPLS) [2] have been proposed and developed
individually, and each of them has its specific goals and
application fields. But it is possible to combine these two
schemes in order to integrate their merits. DiffServ can
provide microscopic flow control, by using differentiated
per-hop behavior for each class type, while the MPLS
traffic engineering provides macroscopic traffic
engineering, like bandwidth reservation, and fault
restoration. DiffServ-over-MPLS TE is standardized in
IETF and allows end-to-end QoS provisioning,

Flows can be mapped onto LSPs in 2 different models:
e E-LSP (Exp-inferred-LSP) — an MPLS LSP can

transport multiple class-types, and the EXP field of the

MPLS Shim header defines the class type of packet

together with drop precedence as shown in Fig. 1. E-

LSP can carry only 8 different class-types of per-hop

behaviors. Thus, E-LSP is usually used when class

types and number of precedences is not so many, e.g. 4

class types and 2 drop precedences.

fosT 1 Exel] BExel 1 [xel |

Fig. 1. Exp-inferred-LSP

e L-LSP (Label-only-inferred LSPs) —each LSP only
transports a single class-type, so the packet label value
defines class type, and the packet drop precedence is
conveyed in the EXP field of the MPLS shim header as
shown in Fig. 2.

lLabelJExgl

| fLabeI Expl | Dcl [Expl

Fig. 2. Label-only-inferred-LSP
2.4 Range-match Classification

Classification is one of the main parts of DiffServ-over-
MPLS processing and is necessary to split an incoming
packet flow into several microflows to provide
differentiated per-hop behaviour, and assign an MPLS label
according to Forwarding Equivalence Class (FEC). The
exact match classifier provided by Intel [6] is a fast solution
for classification. Its design is very simple, and is based on
using hashing. When a new rule is created a hash value is
calculated from necessary fields of packet header. Then
hash is used as an index to classification table entry that is
filled with necessary information. At each packet arrival,
hash value from same header fields is calculated and the
value is used to access the classification information. The
exact match classifier can be used for some packet

-98 -

processing applications, but DiffServ MIB requires range-
match classification. That’s why for full-featured DiffServ-
over-MPLS application range-match classifier has to be
implemented.

Range-match classification is found to be one of the
most complex packet-processing procedures in time-
memory complexity. Most practical solutions use linear
time to search through all rules sequentially, or use a linear
amount of parallelism, e.g., CAM (Content Addressable
memory). While Ternary-CAMs are very common, such
CAMs have smaller density than standard memories,
dissipate more power, and require multiple entries to handle
rules that specify ranges. Thus, CAM solutions are still
expensive for very large rule sets of, say, 100 000 rules, and
are not practical for PC-based routers [7]. Other solutions
also do not show good results and usually have very high
time or memory complexity. This generates a big problem
of implementation of range-match classification that can
work on wire speed of more than 1 Gbps, and does not
require more resources than network processor has.
Solution provided in [7] is one of the algorithms that can fit
the requirements of network processor. The idea is based on
Bit Vector scheme [8], which works according to following
procedure:

e k one-dimensional tries, associated with each
dimensions in the original database, are built, where k
is the number of fields designated for classifying.

an N bit vector is associated with each node of the trie
corresponding to a valid prefix, where N is the
maximum number of rules supported by classifier.

after searching in each dimension, bitwise AND
operation is performed on them and the final bit mask
of matching rules is found.

But with large number of rules the size of bit vector will
increase, cause a scalability problem. Baboescu et. al. [7]
proposed new scheme called Aggregated Bit Vector (ABV)
algorithm which uses the hierarchy of bit vectors to reduce
a lot of unnecessary memory accesses. But this algorithm
requires longer preprocessing time, because, for better
performance rules should be sorted within 1 or 2 fields. The
sorting is done in following way:

e All rules are sorted according to prefix lengths in one

Processing

Network
Receive

International Journal of Kais. Special Edition December 2005

of the fields.

Within groups with same prefix lengths, rules are
sorted by prefixes.

The same operations are performed on other fields, but
within groups with same prefixes in previous field.

The results provided in [7] shows that the algorithm has
very good merits comparing to others, but it will have
lower performance in case when interdependent prefixes
are distributed over the table, and the proposed sorting in
[7] can not provide the best case placement of rules in the
table. In this paper we made several modifications to
improve the classification algorithm performance, at the
expense of rule database update performance.

3. Diffserv-over-MPLS TE on Network Processor
3.1 Program architecture

The implementation of DiffServ-over-MPLS TE is
performed on IXDP 2400 development platform, which
contains 2 IXP 2400 Network Processors connected using
switch fabric loopback. The overall processing is split into
2 parts: ingress and egress. Ingress side processing is
usually responsible for determining the next hop
information, flow ID, LSP ID and class ID information,
while egress side processing usually performs queuing and
scheduling, traffic shaping, L2 header encapsulation and
sending the packet to the network.

Fig. 3. shows the mapping of tasks in ingress side
packet processing to microengines. Driver microblocks are
usually mapped to a single microengine, while processing
microblock group is mapped to all other free microengines.
In order to improve the application performance,
microengines for processing microblocks, were split into 2
groups in separate clusters. Packet order is maintained
using ordered thread execution {9,10]. Different microblock
groups are connected to each other using scratch rings and
next-neighbor rings [9]. Full-scale queue manager and
scheduler on ingress side are necessary only in multi-blade
systems. In single-blade systems queue manager will
maintain only one queue, and scheduler will need only to
handle flow control messages from switching fabric and

Fabric
Transmit

Scheduler

Fig. 3. Overall ingress side program design (Microengines)

-99 .

International Journal of Kais. Special Edition December 2005

send dequeue requests to queue manager. Fabric transmitter
microblock transmits cells to CSIX interface. Each packet
is split into a number of C-frames and transmitted to
switching fabric. First C-frame of the packet carries
additional information, such as packet color, LSP ID, class
ID, and next-hop information.

The ingress processing pipeline is displayed on Fig. 4.
After receiving a packet from scratch ring, the Ethernet
decapsulation and classification microblock checks whether
packet is IP or MPLS packet. If the packet is IP packet than
it goes through header verification, and then passed to the
classifier microblock. If the classifier (currently it is an
exact match classifier) finds a match in its database, it
assigns flow ID, next-hop ID and class ID, and sends
packet to meter microblock that checks the conformance of
the packet. Then, the packet’s DiffServ codepoint (DSCP)
is set, and it is sent to FTN (FEC to NHLFE) microblock
that performs MPLS label stack operations. If classifier
does not find any match, the packet is handled by simple
best effort IPv4 forwarding,

When the incoming packet is an MPLS packet, then it
will go through MPLS ILM microblock only and LSP 1D
will be set after label stack operations will be performed.
Proposed architecture of processing pipeline will allow the
implemented router to support the functionality of both
edge and core routers.

Egress side application design is quite simple, and is
mostly related with per-hob behavior (PHB) of the router as
shown in Fig. 5. First PHB related microblocks is WRED
(Weighted Random Early Detection) microblock. The

Layer 2 encapsulation microblock from Intel was changed
in order to avoid L2 table lookup when MPLS is used.
When MPLS is used, simple Ethernet header with
broadcast source, destination addresses and the MPLS
packet type is added. The most complex part of the egress
microblock is queue manager/scheduler combination of
microblocks. The Queue Manager should maintain separate
logical queues for each class-type of each E-LSP, and one
queue per each L-LSP. Scheduling must be performed
within each E-LSP, within a group of high priority L-LSPs
and low priority L-LSPs. Although such architecture will
increase the complexity of egress side, it is an optimal way
to provide MPLS traffic engineering combined with
DiffServ per-hop behaviors.

3.2 Implementation of range-match classifier

In the current status of the application, only the exact
match classifier from Intel Microblocks library is used.
Unfortunately, as mentioned in previous section, it cannot
provide scalable packet classification, since most of rule
databases of edge routers are using ranges in most of the
fields. But the approach used in this microblock, which
uses hash values for fast exact match lookup will be used in
further.

The aggregated bit vector algorithm described in
section 2.4 is found to be a good candidate for DiffServ-
over-MPLS application being developed. The original
Aggregated Bit Vector (ABV) proposal does not cover the
method of search in each of fields describing only the

Fig. 4. Design of ingress side processing pipeline

Fabric
Receive

Fabric
Transmit

Queue
Manager

Scheduler

Fig. 5. Overall egress side program design (Microengines)

- 100 -

SRAM 0

SRAM 1

DRAM

Scratch

Source iP-64k root
frie node

Source IP-256 root

trie node

Destination 1P-64k
root trie node

Destination IP-256
root trie node

Source Port root
trie node

Source [P 4 bit trie
nodes

Destination IP 4 bit
trie nodes

Source IP 4 bit trie
nodes

Wildcard Bitvectors
table

Default rule
statistics entry

Destination Port

root trie node

Destination IP 4 bit
trie nodes

iP protocol type

table (256 entries) Statistics table

Bitvectors table

Fig. 6. Organization of data structures in memory

aggregation technique that exploits the sparseness of bit
vectors. In our implementation we use multi-bit tries to
decrease the search time in individual fields. Tries for
lookup in IP source and destination addresses fields will be
built in a same way as it was built for IPv4 forwarder
microblock by Intel [6] using dual lookup algorithm. Port
tries has root trie node representing 8-bits and child trie
nodes representing 4 bits. For protocol lookup simple table
is used, since exact-match lookup is sufficient.

To increase parallelization, search must be done in
multiple fields in parallel. For that purpose, we propose a
memory hierarchy where different tries are stored in
different types of memory. Organization of the proposed
data structures in memory is shown on Fig. 6.

To avoid fragmentation of memory on dynamic memory
allocation and deallocation, simple memory management
system is implemented. The idea is to allocate memory for
maximum number of entries, which is system parameter
depending on free memory size, once during program
initialization. After that, numbers from 1 to maximum
number of entries are inserted in one-directional linked list,
called freelist. When memory for new entry is required,
unused memory index is retrieved from freelist, and reverse
operation is done on deallocation. This approach also helps
to reduce memory used by entries, because instead of
keeping 32-bit memory pointers they will just keep 16 bit
indices.

The design of microblock exploits the serial operation
of memory controller and special features microengines. So
to perform parallel search in all fields, read operations of
memory from all trie nodes is requested. After that, the
microengine waits until any of reads is finished. Once any
read is finished, microengine continue search requesting
new read for certain field, and waiting on any signal. For
reading partitions of bit vector all the reads are requested
one after the other, and the signal indication completeness

International Journal of Kais. Special Edition December 2005

is expected only for the last read. This helps to avoid the
limitation in number of signals.

Also there can be some enhancements in sorting
algorithm which can increase the performance of
classifying. The main goal of sorting is to group the rules
that the same packet can match together, since this will
improve the effect of aggregation. We suggest using
lexicographic sorting instead of sorting by prefixes. Table 1
shows the example.

Table 1. Example of lexicographic vs. prefix-based sorting.

Grouping according to | Grouping according
algorithm in [7] to our suggestion
* *

* *

* *
150.* 150.*
150.* 150.*
170.* 150.200.*

150.200.* 162.200.*

162.200.* 162.200.*

162.200.* 170.*
170.10.23.* 170.10.23.*

As it can be seen from the table, the aggregation will
have much higher performance improvement in the second
case, than in the first one, which was proposed in [7]. But
this approach has a disadvantage in preprocessing time,
since lexicographic sorting requires longer time. Usage of
this approach will depend on certain circumstances, which
the application will be used under.

3.3 Implementation details on other DiffServ related
microblocks

For Diffserv related tasks, microblocks from Intel
Microblock Library with minor changes, are used. The
three color metering (TCM) is standardized by IETF [12,
13]. In the implementation TCM microblock from Intel
Microblocks Library has been used. It supports both Single-
Rate TCM and Two-Rate TCM. Each flow is metered
separately, and flows are distinguished by using flow ID,
set by classifier.

Periodic token updates, required by standard, bring in
performance concerns in 1XP2400 and IXP2800 Network
Processors. Basically, such solution would require either a
dedicated microengine thread that continuously updates the
metering table entries, or a background task running on
Intel XScale core. The first solution is not applicable since
the SRTCM block is a part of a functional pipe stage. All
threads constituting a functional pipeline have to perform
the same operations. On the contrary, a dedicated task on
Intel XScale core would have to inspect meter entries quite
frequently due to possibly high flow rates. As a result, a
significant amount of SRAM memory accesses would
occur, which is critical to the fast path performance. So the

- 101 -

International Journal of Kais. Special Edition December 2005

token counts are updated by using interval between current
and previous timestamps multiplied by token count update
rate (CIR or PIR). TCM microblock takes 109 cycles to

process a packet in the worst case.

The DSCP marker microblock is quite simple. It has to
set up the DiffServ codepoint in IP packet header. The class
ID value is determined by classifier, and color ID is
determined by meter. The update of checksum is performed

by the method given in [14].
4. Performance Evaluations and Analysis

4.1 Performance evaluation

Fig. 7 depicts the testbed topology for performance
measurement and evaluation. For the traffic generating
purposes SmartBits SMB-6000 traffic generator with 2
ports was used. 2 IXDP 2400 Development platforms are
used to run the application. In order to test the capability of
processing of 4 Gbps throughput, IXDP 2400 platforms
were connected to each other several times (Fig. 8.), so
each port sends and receives 1 Gbps streams at a time.
Exact-match classifier was used in the measurement,
because range-match classifier is under implementation
stage. The estimated performance of the proposed range-

match classifier is provided in section 4.3

IP packets

“SmartBits |€- - - - - _
SMB-6000(€77 77T 1T TR
" Traffic | & - -

Generator:

R

Fig. 7. Testbed topology

4.2 Analysis of the Results

The designed DiffServ-over-MPLS packet processing
modules show on the average 3.5 Gbps throughput (not
considering encapsulated MPLS shim headers), as shown in

—_—
8 -

o

= |

- R

£7T

2

< 90

H

E88

=

8

84 ;
S I e & & &
T S S & & &

Packet size, bytes

Fig. 8. Throughut vs. packet size (Load=4 Gbps)

a Max
@ Min

512 1024 1280 1518 3000 5000 7000 9000
Packet size, bytes

Fig. 9. Average latency vs. packet size

Fig. 8. The low throughput in the range of the very small
packet size (78 bytes), is described with the big number of
packets since each of packets will have additional shim
header added, and not enough processing power to process
so large number of packets. Decreased throughput with the
increased packet size is caused by lack of receiving buffers
in MSF interface, since the bigger sized packets will require
more space in the buffers and longer time necessary to store
the whole packet before the processing will start.

The average packet delay was also measured using the
same topology. The results are shown in Fig. 9. Since the
application is using store-and-forward technology, the delay
increases when the packet size increases. Although the
implemented application supports jumbo frames, the
performance of jumbo frames processing is a little worse
than the case of non-jumbo frames. The implemented
MPLS processing supports up to 4 label pushes, and
recursive label processing on incoming MPLS packets.
Microblocks taking the longest processing time is IPv4
forwarding, because it requires the longest prefix match
lookup to be done. Once range-match classifier is
implemented it will be the microblock taking the longest
processing time, because it will perform lookup several
times.

4.3 Analysis of range-match classifier

Since the range-match classifier is under
implementation stage, currently only expected performance
results are available. The only performance critical part of
classifier is microblock. As it can be seen from pseudocode,
the microblock requires at most 5 consecutive memory
accesses for searching all fields, since it is the longest
search time among all fields and all lookups are done in
parallel. The last access here is reading of ABV. After ABV
operations are completed one more burst of accesses is
necessary for corresponding partitions of bit vector. So, the
longest set of consecutive memory accesses is: 4 SRAM +
2 DRAM accesses, which will result in (4*90+2*120) =600
cycles. Adding here the rule entry read we get 1 more
SRAM access, so the minimum number of cycles required
for classification will be 690 cycles, while totally around
3000 cycles are allowed for overall processing.

Total number of cycles required for classification

-102-

increases, depending on the microengine instructions
number in classification, load of memory channels and
organization of pipelining in memory controller. Usage of
statistics also increases the processing time. Since 64 bits
are used as aggregation size and word size, maximum
number of rules supported is 64x64=4096.

4.3 Scalability

Theoretically the system can be designed with
maximum number of 16 blades, with 4 ports on each blade.
The number of flows is limited by 4096, because 64 bit
word size and aggregation size is chosen according to the
largest memory width available in Intel IXP 2400 network
processor. The number of total possible LSPs and next hops
of IP routing table can reach up to 2'® (may be less,
depending on queue manager restriction configuration).
Labels can be assigned in per-interface and per-system
manner. The practical limitations can be lower depending
on the memory size of used platform.

5. Conclusion

In this paper, we analyzed the implementation details of
DiffServ-over-MPLS architecture on Network Processor
and particularly the classification problem. We proposed an
improved classification algorithm, based on Aggregated Bit
Vector scheme. Application in its current status shows good
results in performance test. Although the DiffServ-over-
MPLS architecture is well-known, most of its
implementations were designed for hardware, while the
implementation on network processor can make it more
flexible. The proposed DiffServ-over-MPLS TE
implementation on network processor should help in the
analysis of functional blocks and improving them in future.
Future works include implementation of the proposed
range-match classifier architecture, dynamic queue
manager/scheduler, functional modules of control plane and
OAM functionality.

References

{11 S. Blake et al., “An Architecture of Differentiated
Services,” RFC 2475, IETF, December, 1998.

[2] E. Rosen et al., “Multiprotocol Label Switching
Architecture,” RFC 3031, IETF, January, 2001.

[31 F Le Faucheur, editor, “Multiprotocol Label
Switching (MPLS) support of Differentiated
Services,” RFC 3270, IETF, April, 2002.

[4] “Intel® IXP2400 Network Processor Hardware
Reference Manual, Intel Corporation,” October,

2004.
[5] “Intel® Internet Exchange Architecture Portability
Framework Developer’s Manual,” Intel

Corporation, November, 2004.

International Journal of Kais. Special Edition December 2005

[6] “Intel® Internet Exchange Architecture Software
Building Blocks Developer’s Manual,” Intel
Corporation, November, 2004.

[71 Florin Baboescu and George Varghese, “Scalable
Packet Classification,” IEEE/ACM transactions on
networking, vol. 13, No. 1, February 2005.

[8] T. V. Lakshman and D. Stidialis, “High speed
policy-based packet forwarding using -efficient
multi-dimensional range matching,” in Proc. ACM
SIGCOMM, Sep. 1998.

[9] Erik J. Johnson and Aaron R. Kunze,
“IXP2400/2800 Programming,” Intel Press, 2003.

[10] Bill Carlson, “Intel Internet Exchange Architecture
and Applications,” Intel Press, 2003.

[11] Y. Tung and H. Che, "Study of Flow Caching for
Layer-4 Switching,” in the Proceedings of IEEE
ICCCN’00, pp. 135-140, 2000.

[12]). Heinanen, Telia Finland, R. Guerin, “A Single
Rate Three Color Marker,” RFC 2697, IETF,
September, 1999.

[13] J. Heinanen and R. Guerin, "A Two Rate Three
Color Marker,” RFC 2698, September 1999.

[14] A. Rijsinghani, Editor, “Computation of the Internet
Checksum via Incremental Update,” RFC 1624,
IETF, May 1994.

Djakhongir Siradjev is a candidate
of M.S. degree in the department of
Information and Communication
Engineering at Yeungnam University.
His research focus is fast packet
processing on network processors. He
has investigated issues in
1mplement1ng of DiffServ-over-MPLS
related packet processing algorithms on network processors,
provisioning of guaranteed Quality of Service (QoS). Mr.
Siradjev has given presentations at regional and national
conferences and workshops.
Youngsu Chae received the B.S. and
the M.S. degrees in computer science
from Pohang University of Science and
Technology, Pohang, Korea, in 1994
and 1996, respectively. He is currently
a faculty member of School of EECS,
Yeungnam University, Kyoungsan,
= Korea. His research interests include
mobility management and QoS support in mobile networks,
large scale Internet service architecture, and 4G networks.
Young-Tak Kim is a professor in the
school of electrical engineering and
computer science (EECS) of
Yeungnam University, Korea. He
graduated Yeungnam Univ. in 1984,
and received Master Degree and Ph.D.
degree from KAIST (Korea Advanced
Institute of Science and Technology) in
1986 and 1990, respectively. He joined

-103 -

International Journal of Kais. Special Edition December 2005

Korea Telecom (KT) in March 1990, where he had
researched and developed an ATM Metropolitan Area
Network (MAN) Switching System (ATM-MSS). He
transferred to Yeungnam University in September 1994. He
has performed many research projects in the area of “High-
speed Telecommunications Networking” and “Network
Operations and Management.” Currently he is the director
of government supported University IT Research Center
(ITRC) which is developing “QoS-guaranteed Traffic
Engineering and Multimedia Service Platform in the
Broadband convergence Network (BcN).” His research
interests include QoS-guaranteed inter-AS traffic
engineering and broadband mobile Internet service
provisioning on a broadband converged wired & wireless

network environment. Prof. Young-Tak Kim is a member
of IEEE Communication Society, KICS (Korea Institite of

Communication Society), KISS (Korea Information
Society), KIPS (Korea Information Processing Society),
and Korea Multimedia Society. He has been working as an
organization committee member of APNOMS (Asia Pacific

Network Operations and Management Symposium), and
IEEE NOMS-2004 (Network Operations and Management

Symposium).

- 104

