International Journal of Kais. Special Edition December 2005

Frameworks and Environments for Mobile Agents

Haeng Kon Kim
Department of Computer Information &
Communication Engineering,
Catholic University of Daegu, Korea
hangkon@cu.ac.kr

Abstract

The Mobile agent-based distributed systems become
obtaining significant popularity as a potential vehicle to allow
software comporents to be executed on heterogeneous
environments despite mobility of users and computations.
However, as these systems generally force mobile agents to
use only common functionalities provided in every execution
environment, the agents may not access environment-specific
resources. In this paper, we propose a new framework using
Aspect Oriented Programming technique to accommodate a
variety of static resources as well as dynamic ones whose
amount is continually changed at runtime even in the same
execution environment. Unlike previous works, this framework
divides roles of software developers into three groups to
relieve application programmers from the complex and error-
prone parts of implementing dynamic adaptation and
allowing each developer to only concentrate on his own part.
Also, the framework enables policy decision makers to apply
various adaptation policies 1o dynamically changing
environments for adjusting mobile agents to the change of
their resources.

1. Introduction

As wireless devices such as PDAs and cellular phones and
new Internet based technologies, for example, grid,
ubiquitous computing and active networks, has been rapidly
emerged, modern computing environments are becoming
very complex [3, 7, 16]. Also, mobility of users and devices
leads to their softwares being executed on dynamically
changing environments that support different capabilities and
types of available local resources respectively. In terms of
software development, these issues make it difficult to
design the application programs because it is impossible to
obtain completely accurate information about their
dynamically changing runtime environments in advance.
Thus, it is essential to develop a new middleware platform
allowing software components to adapt to their local
execution environments at runtime.

Mobile Agent technology is gaining significant popularity

- 48 -

Youn-Ky Chung
Department of Computer Engineering,
Kyung Il University, Republic of Korea
ykchung@kiu.ac.kr

as a potential vehicle for considering the complexity and
variety [6]. Mobile agent is an autonomously running
program, including both code and state, that travels from one
node to another over a network carrying out a task on user’s
behalf [8, 13, 14, 17). However, this beneficial technology
cannot become the practical alternative until it copes with
the discrepancies among its changing environments. To solve
the problem, many previous works primarily use resource
abstractions or virtualizations, such as virtual machines or
runtime systems for mobile agents [8]. If mobile agents use
only common functionalities supported in all execution
environments, they work well. But, as they cannot access
uncommon functionalities specific only to a few
environments, the environment-dependent resources may be
unavailable to the agents. Therefore, the mobile agent-
enabled infrastructure should be designed to accommodate a
variety of static resources like heterogeneous hardwares,
operation systems or system configurations, but also
dynamic resources like CPU, memory, network bandwidth
whose amount is continually changed even in the same
environment.

To satisfy the goal, a dynamic adaptation scheme [4] was
proposed to enhance efficiency of mobile code in terms of
bandwidth usage and scalability. In this scheme, the code
which is moved over the network is limited to the parts that
are environment independent and needed everywhere.
Environment dependent parts are only transferred and
assembled when needed. However, this scheme requires that
mobile agent application programmers should recognize
every environment specific pars in advance, which is not
realistic. Moreover, the scheme only considers the static
resources whose states are initially set in a particular
environment according to its single policy, but changed no
longer.

In this paper, we present a transparently adaptive
framework using AOP(Aspect Oriented Programming)
technique [10, 11] to handle the two problems of the
previous scheme. For the first problem, this framework
divides roles of software developers into three groups, i.e.,
mobile agent application programmer, policy decision maker

and component implementer. The first developer has only to
write the functional, application-specific code with no
knowledge about adaptable software parts. The second
developer recognizes environment dependent parts from the
functional code and then implements the non-functional code
monitoring the execution of the functional code(security,
capacity and mobility etc.) using AOP. The final developer
makes environment-specific codes. This development flow
has the advantage of relieving application programmers from
the complex and error-prone parts of implementing dynamic
adaptation and allowing each developer to only concentrate
on his own part. For the second problem, the framework
enables the policy decision maker to apply various execution
policies to dynamically changing execution environments for
adapting mobile agents to the change of static resources as
well as dynamic ones. To prove the power of this framework,
we implemented a mobile agent system based on our
proposed concepts.

The rest of the paper is organized as follows. Section 2
reviews related works that have been performed in advance
and section 3 introduces our framework. In sections 4 and 5,
we describe our implemented prototype and conclude this
paper with our future works.

2. Related Work

There have been several studies applicable for mobile
agent systems’ adaptation to changing environments.

Static adaptation is used in the area of component-based
software engineering [5, 9]. It accepts a component with a
description of the requested modifications and produces the
transformed component suitable for the particular
application. However, this technique cannot solve the
problem of dynamic adaptation because it is generally
applied at compile time, not runtime.

In the continuous adaptation techniques [1, 12], resources
are monitored and the adaptation process is initiated as the
resources are monitored and the adaptation process is
initiated as the resource conditions change. The input for this
approach is running application relying on frequently and
strongly changing resources and classes of resource or
quality of service parameters. Its output is generally the
update of environment-dependent parameters. Thus, this
approach primarily focuses on the parameter adjustment
whereas we are looking at adaptable methods to change
environment-specific codes.

Sumatra [2] implemented a scenario which reduces the
response item of each chatting client by migrating chatting
servers, if needed, based on network latency between hosts
measured through resource monitoring. Thus, it allows
distributed applications to monitor the network state and
dynamically place computation and data in response to
changes in the network state. However, this system cannot
provide dynamic adaptation when an environment changes

- 49 -

International Journal of Kais. Special Edition December 2005

because a mobile agent programmer had to write
applications in SWITCH-CASE style, which is assuming
that it can obtain accurate information of execution
environments and their states in advance and cope with the
changes in all situations.

Brandt and Resiser [4] introduced a dynamic framework
to adapt a mobile agent to its currently running environment
by using adaptors for identifying, loading and integrating
environment specific parts into the mobile agent. The
adapters include the context awareness module and the
reconfiguration component. It improves efficiency of mobile
code in terms of bandwidth through reducing the size of the
movable code called the core part. However, the framework
requires mobile agent application programmers to recognize
dynamically changing parts. Moreover, it can apply only a
single policy to the corresponding resource at runtime. So, if
the state of each dynamic resource such as available memory
size is changing at runtime and then its current
implementation becomes non-executable in the stat, the
mobile agent may not continuously perform its task any
longer because the implementation of the resource is
determined only once when the mobile agent arrives at the
current execution environment.

3. The Framework for Transparently Dynamic
Adaptation

For dynamic adaptation to heterogeneous environments,
the previous framework [4] divides a mobile agent program
into two parts, core part and adaptable part. The core part
consists of functional code and non-functional code
generally includes capabilities of context awareness and
reconfiguration. The adaptable part is composed of various
environment-specific codes. As mentioned above, this
framework has two practical problems as follow: First it
doesn’t achieve complete transparency to application
programmers because they must understand beforehand what
parts of the mobile agent are environment dependent. As the
second problem, the scheme only considers the static
resources whose states are initially set in particular
environment according to its single policy, but changed no
longer.

Our proposed framework addresses the two problems as
follow: like in figure 1, initially, application programmers
develop the functional code of the core part at the base level.
Afterwards, policy-decision makers recognize a part of the
functional code that may be affected by underlying
heterogeneity and needs dynamic adaptation, determine
which execution policies can be applied for the part and then
write the corresponding non-functional code, including the
applicable policies, interface names, environment awareness
module, dynamic implementation loading module and so on,
at the meta level. In here, our framework uses aspect-
oriented programming technique to achieve the seamless

International Journal of Kais. Special Edition December 2005

role separation because of the inherent conceptual separation
it makes between the base level and the meta level [10]. If a
monolithic mobile agent with the whole code for all different
environments written in SWITCH-CASE style is intended to
use for dynamic adaptation, the size of its migrated code
becomes extremely larger and it is very difficult to
transparently modify and add new adaptable parts to the
agent program.

Figure 2 shows our dynamic adaptation procedure with
multiple policies applied. When the core part of a mobile
agent arrives at a new execution environment, it senses the
environment and obtains environment-dependent variables
from the local repository (in case of static resources) and the
infrastructure monitor (in case of dynamic resources). Then,
the dynamic loading module at the meta level is performed
with interface names, environments variables and applicable
policies to determine the appropriate adaptable pars for the
local environment, find and load the corresponding
implementation procedures from the code repository, and
link then to the core part of the agent.

For this dynamic adaptation, component developers have
to implement not only the corresponding interfaces, but also
their associated condition functions, which are invoked with
values of the environment variables related to the interfaces
and return true or false according to whether the values are
suitable for the interfaces. After checking and comparing all
return values of the condition functions depending on their
applicable policies, it is determined which implementation
class is suitable for this environment.

3.1. Implementation

A simple prototype for realizing our framework is
implemented using #Code {15], which is a lightweight and
flexible toolkit for code mobility written in pure Java
programming language. Also, in order to apply the aspect-
oriented programming technique to the framework, we use
Aspect]{11] that is a simple and practical aspect-oriented
extension to Java.

The prototype library consists of a Java package named
Adptation. This package is composed of three core classes
and one interface, i.e., Place, Context, AdaptationPolicy
and Aspect. The functionality of these classes is as follows:

* Place class

This class instantiates a mobile agent execution environment
extending uServer in uCode toolkit. It also plays a role of a
code repository maintaining classes for adaptable parts of
mobile agents and delivering them to the dynamic loading
module. For this purpose, each shared class space associated
with a uServer is modified to implement the code repository.

» Context class
This class consists of concerning environment variables, e.g.,

OS name, CPU type, version of Java Virtual Machine,
network bandwidth, CPU utilization and so on, and functions

T

Application
Programumer Procedurel
BASE
Procedure2
Polipy
Applidation \)
/"""’“‘“‘—“‘“‘—‘_“““—“"“-“\
policies + environment META
Policy-decision aware + loading LEVEL
maker (Procedure 1 Interface) /

N J

Policies applied mobile agent program

Figure 1. Role separation for transparent adaptation

Mobile agent program

Policy application
procedure 1

BASE LEVEL

palicies + environment
aware + loading
{Procedure | Interface)

T e T procedure 1
AN 3 Onml“:wnn selection (state 1)

1. Environment aware

2. interface came, enviroment vakues
policy 1, .., pobcy M

implementation

implementation

pracedure N
(state N)

{ environment

(state 1. state 2, state N) J METALEVEL

Figure 2. Multiple policies applied dynamic adaptation

for getting values of the wvariables. In here, each
corresponding function is declared in the form of
get_ CONDITION(Context. VARIABLENAME).

For example, if a variable is defined as OS_NAME, function
get CONDITION(Context.OS NAME) is invoked. Thus,
when a new context is added, mobile agent programmers
have only to use the corresponding variable in Context class
and component developers just use the added function
without implementing a new one.

-50-

« AdaptionPolicy interface
This interface defines the following constants representing
various policies.

- AND: the policy suitable in case that all return values of
condition functions for the environment variables applied are
true.

- OR: the policy suitable in case that at least one among all
return values of condition functions for the environment
variables applied is true.

- NONE: the policy suitable in case that all return values of
condition functions for the environment variables applied are
false.

» Adaptation class

This class implements kernel modules of our framework for
applying various adaptation policies transparently, sensing
execution environments and dynamically loading the
corresponding implementation classed from the repository.
In Particular, function setAdaptation() is defined to apply
policies for a method of a mobile agent to its current runtime
environment variables and several policies is invoked, the
adaptive implementation of the method is automatically
linked to the mobile agent. Also, this class has a function
enabling it to access to its local Place class.

4. Conclusions

This paper proposed a transparent adaptation framework
using AOP technique to enable policy decision makers to
apply multiple policies to dynamically changing
environments for adjusting mobile agents to the change of
their resources. Unlike previous works, this framework
divides roles of software developers into three groups to
relieve application programmers from the complex and
error-prone parts of implementing dynamic adaptation and
allowing each developer to only concentrate on his own part.
Second, this framework can accommodate not only various
static resources, but also dynamic ones whose states are
continually changed at runtime even in the same execution
environment. Finally, we implemented a prototype to realize
the power of our conceptual framework. However, this
prototype is not a full-fledged mobile agent system yet. Also,
for performance evaluation, we should implement some
previous works, e.g., traditional monolithic adaptation
framework where a mobile agent is migrated with the whole
code for all heterogeneous execution environments. If all of
them have been completed, we will attempt to compare our
framework with the previous works with respect to the
following two performance indexes: One is the size of
migrated code of a mobile agent, which significantly affects
network bandwidth. The other is the runtime overhead
resulting from the execution of context awareness and the

-51-

International Journal of Kais. Special Edition December 2005

time for loading the implementation classes.

References

[1] GD. Abowd, A. Dey, R. Orr and J. Brotherton. Context-
awareness in wearable and ubiquitous comuting. Virtual
Reality, Vol. 3. pp. 200-201, 1998.

[2] A.Acharya, M.Ranganathan and J.Saltz. Sumatra: A
Language for Resource-Aware Mobile Programs.
Lecture Notes In Computer Science, Vol. 1222. pp. 111-
130, 1997

[3] P.Bellavista, a.Corradi and C.Stefanelli. The Ubiquitous
Provisioning of Internet Services to Portable Devices.
IEEE Pervasive Computing, Vol. 1, No. 3, pp. 81-87,
2002.

[4] R.Brandt and H.Reiser. Dynamic Adaptation of Mobile
Agents in Heterogeneous Environments. In Proc. of the
International Conference on Mobile Agents, LNCS
2240. pp. 70-87, 2001.

[5] ADuncan and U.Hélzle. Load-Time Adaptation:
Efficient and Non-Intrusive Language Extension for
Virtual Machines. Technical Report TRCS99-09,
University of California at Santa Barbara, April 1999.

[6] A.Fuggetta, GP.Picco and G.vigna. Understanding Code
Mobility. IEEE Transactions on Software Engineering,
Vol. 24, No. 5, pp. 342-361, 1998.

[71 MVFukuda, Y.Tanaka, N.Suzuki, L.F.Bic and
S.Kobayashi. A Mobile-Agent-Based PC Grid. In Proc.
of the Fifth Annual International Workshop on Active
Middleware Services, pp. 142-150, 2003.

{8] D.Lange and M.Oshima. Programming and Deploying
Mobile Agents with Aglets. Addison-Wesley, 1998.

[9]1 R. Keller and U.Hélzle. Binary code adaptation. In Proc.
of the 12th Annual European Conference on Object-
Oriented Programming, July 1998.

[10] GKiczales, J.l.amping, A.Mendlheka, C.Maeda,
C.V.Lopes, J.M.Loingtier and J.Irwin. Aspect-orintend
programming. Lecture Notes In Computer Science, Vol.
1241, pp. 220-242, 1997.

[11] GKiczales, E.Hilsdale,. J.Hugunin, M.Kersten, J.Palm
and W.Griswold. An overview of Aspect] .Lecture Notes
in Computer Science, Vol. 2072, pp. 327-353,2001.

[12] B.Noble. System support for mobile, adaptive

International Journal of Kais. Special Edition December 2005

applications. /EEE Personal Communications, pp. 44-
49, 2000.

[13] ObjectSpace. Voyager. Attp://www.objecspace.con/.

[14] V.Pham and A.Karmouch. Mobile Software Agents: An
Overview. [EEE Communications Magazine, Vol. 36,
pp. 26-37, 1998.

{15] GP.Picco. y Code: A Lightweight and Flexible Mobile
Code Toolkit. In Proc. of the 2™ Int. Workshop on
Mobile Agents, pp. 160-171, 1998.

[16] GP.Picco, A.L.Murphy and G-C Roman. LIME: Linda
meets mobility. /n Proc. of the International Conference
on Software Engineering, pp. 368-377, 1999.

[17] K.Rothermel and M.Schwehm. Mobile Agents.

Encyclopedia for Computer Science and Technology,
Vol. 40, pp. 155-176, 1999.

-52-

Dr. Haeng-Kon Kim is currently a
professor in the Department of
Computer Engineering, and Dean of
Engineering College, Catholic
University of Daegu in Korea. He
received his M.S and Ph.D degree in
Computer Engineering from Chung
Ang University in 1987 and 1991,
respectively. He has been a research
staff in Bell Lab. and NASA center in U.S.A. He also has
been researched at Central Michigan University in U.S.A.
He is a member of IEEE on Software Engineering, KISS
and KIPS. Dr. Kim is the Editor of the international
Journal of Computer and Information published quarterly

by Korea Information Science Society. His research
interests are Component Based Development, Component
Architecture, & Frameworks Design.

Dr. Youn Ky Chung is
Professor in the Department of
Computer Engineering in
Kyungil University in Korea.
He received his M.S and Ph.D
degree n Computer
Engineering from Yeungnam
University in 1984 and 1996,
respectively. He spent 6 years

as an assistant professor of Catholic Sang-Ji Junior College
in Korea. He was a visiting Professor at the University of
Newecastle in Australia form 1998 to 1999. He was Head of
computer Center in Kyungil University during the last four
years. His research interests are Multimedia
Communication, LAN/WAN Technology, Network
management(TINA/TMN) and Next Generation Internet,

