Characterization of Alanine Scanning Mutants of a Peptide Specifically Binding to $TiO_{2}$ Nanoparticles

$TiO_{2}$ Nanoparticle에 특이적으로 결합하는 Peptide의 Alanine Scanning Mutant의 성질에 관한 연구

  • Seo, Min-Hee (Departments of Bioscience and Biotechnology Hankuk University of Foreign Studies) ;
  • Chael, Hee-Kwon (Departments of Bioscience and Chemistry Hankuk University of Foreign Studies) ;
  • Myung, Heejoon (Departments of Bioscience and Biotechnology Hankuk University of Foreign Studies)
  • 서민희 (한국외국어대학교 생명공학과) ;
  • 채희권 (한국외국어대학교 화학과) ;
  • 명희준 (한국외국어대학교 생명공학과)
  • Published : 2005.12.01

Abstract

We have previously reported the isolation and characterization of peptides binding to $TiO_{2}$ nanoparticles from phage display peptide libraries. One of the peptides (PEP9) was selected and mutant peptide-displaying phages were produced by alanine scanning mutagenesis. The mutant phages were subjected to binding analysis to $TiO_{2}$ nanoparticles. When the proline at residue 4 was substituted by alanine, the binding activity was reduced to $10\%$ of that of wild type PEP9. Substitution of valine at residue 2, serine at residue 3, and isoleucine at residue 5 also decreased the binding to $40\%$. Based on these observations, we concluded that the three dimensional structure generated by residues 2-5 was the critical factor for the binding between PEP9 and the nanoparticle.

본 연구진은 phage display peptide library로부터 $TiO_{2}$ nanoparticle에 binding 하는 peptide를 선별하여 보고한바 있다. 이 중의 하나인 PEP9을 선택하여 alanine scanning mutagenesis를 통하여 mutant peptide를 display하는 phage를 제작하여 $TiO_{2}$에의 binding을 조사하였다. 그 결과, 4번 위치의 proline이 alanine으로 치환된 peptide의 경우 binding activity가 $10\%$로 감소하였고, 2번 valine, 3번 serine, 5번 isoleucine의 치환 peptide는 binding이 $40\%$로 감소하였다. 이러한 사실로 미루어볼 때, PEP9과 $TiO_{2}$ nanoparticle의 결합에는 2, 3, 4, 5번의 아미노산이 만들어내는 3차원적 구조가 중요한 역할을 하는 것으로 결론 내릴 수 있었다.

Keywords

References

  1. Cesareni G. 1992. Peptide display on filamentous phage capsids. A new powerful tool to study protein-ligand interaction. FEBS Lett. 307: 66-70 https://doi.org/10.1016/0014-5793(92)80903-T
  2. Larocca, D. and A. Baird, 1999. Gene transter to mammalian cells using genetically targeted filamentous bacteriophage. FASEB J. 13: 727-734 https://doi.org/10.1096/fasebj.13.6.727
  3. Lee, S.-W, C. Mao, C. E. Flynn, and A. M. Belcher. 2002. Ordering of quantum dots using genetically engineered viruses. Science 296: 892-895 https://doi.org/10.1126/science.1068054
  4. Mao, C., C. E. Flynn, A. Hayhurst, R. Sweeney, J. Qi, and A. M. Belcher. 2003. Viral assembly of oriented quantum dot nanowire. Proc. Natl. Acad Sci. USA. 100: 6946-6951
  5. Mao, C., C. E. Flynn, D. J. Soils, B. D. Reiss, S. T. Kottmann, R. Y.Sweeney, A. Hayhurst, G. Georgiou, B. Invension, and A. M. Belcher, 2004. Virus-based toolkit for directed synthesis of magnetic and semi-conducting nanowires. Science 303: 213-217 https://doi.org/10.1126/science.1092740
  6. Roth, T. A., G. A. Weiss, C. Eigenbrot, and S. S. Sidhu. 2002. A minimized M13 coat protein defines the minimum requirements for assembly into the bacteriophage particle. J. Mol. Biol. 322: 357-367 https://doi.org/10.1016/S0022-2836(02)00769-6
  7. Seo, M. H., H. K. Chae, and H. Myung. 2005. Selection and characterization of peptides specifically binding to $TiO_2$ nanoparticles. J. Microbial. Biotechnol.(in press)
  8. Sidhu, S. S. and S. Sachdev. 2001. Engineering M13 for phage display. J. Mol. Biol. 18: 57-63
  9. Sidhu, S. S., W. J. Fairbrother, and K. Deshayes. 2003. Exploring protein-protein interactions with phage display. Chembiochem. 4: 14-25 https://doi.org/10.1002/cbic.200390008
  10. Weiss G. A. and S. S. Sidhu. 2000. Design and evolution of artificial MI3 coat proteins. J. Mol. Biol. 300: 213-219 https://doi.org/10.1006/jmbi.2000.3845
  11. Weiss, G. A., C. K. Watanabe, A. Zhong, A. Goddard, and S. S. Sidhu. 2000. Rapid mapping of protein functional epitopes by combinatorial alanine scanning. Proc. Natl. Acad Sci. USA. 97: 8950-8954